
In
d

u
st

ri
a
l
 E

le
c
tr

ic
a
l
E
n

g
in

e
e
ri
n

g
 a

n
d

A

u
to

m
a
ti
o

n

CODEN:LUTEDX/(TEIE-5423)/1-68(2019)

Virtual Commissioning for a
Linear 12-Axis Machine

Eric Chronvall

Christian Svensson

Division of Industrial Electrical Engineering and Automation
Faculty of Engineering, Lund University

Virtual Commissioning for a Linear 12-axis
machine

Eric Chronvall
Christian Svensson

June 2019

Division of Industrial Electrical Engineering and Automation
Lund University
Box 118
SE-221 00 LUND
Sweden

c© 2019 by Eric Chronvall and Christian Svensson.
All rights reserved.
Lund 2019

Abstract
In practice, Virtual Commissioning is a technical method within the au-

tomation field where you can create a simulated twin factory to a real physical
factory containing functional machines. The purpose of Virtual Commissioning
is to move a great portion of the commissioning tasks to an earlier state in
the project. To make this possible a simulation model of a system is created
within a simulation program. The behavior of the system is then programmed
through an external PLC program. This allows for software testing simultane-
ously with the software development environment to verify the functions of the
PLC program.

This thesis investigated the possibility of using a simulation program, Visual
Components, on four transportation robots with three linear axes each. These
transportation robots would then together represent the entire linear 12-axis
machine. The four robots could then be moved separately or all together by
changing their 3D-positions through PLC code sent into Visual Components.
Furthermore the programming environment of TwinCAT was used. The vision
was to connect Visual Components and TwinCAT through a communication
protocol - Beckhoff ADS. Through ADS communication, data could be sent
back and forth between the two programs. To structure the code, the OMAC
PackML construction was decided to be implemented. In addition, a HMI (a
display with buttons to be pressed by a machine operator) was constructed. By
the HMI, all necessary functions such as point-to-point movement, jogging and
stopping were implemented. The final result was a software program based upon
PackML in TwinCAT, a HMI and a Visualized model in Visual Components.

Acknowledgements
We would like to give sincere appreciation to Beckhoff Automation AB and

their staff, especially within the technical support department. A special thanks
to Daniel Jovanovski for giving us fantastic guidance throughout the project
and Fredrik Malmgren for support with documenation and project planning. A
thanks to Fredrik Nygren and Mattias Nilsson who supported us with knowledge
within OMAC PackML.

We are sincerely grateful for the support of AP&T making this thesis a
possibility. Especially Christer Bäckdal, vice CTO of AP&T, not only assigning
us this task but giving us valuable advise in order to accomplish this project.

We are grateful for the support of our supervisor Gunnar Lindstedt at IEA,
dedicating valuable time to us in time of need. Furthermore, we would like to
give appreciation to Ulf Jeppsson, taking the role as examiner for our project
and giving valuable feedback.

Every input from these people have been of great importance for us to com-
plete this thesis. Additionally, we would like to thank Beckhoff who lend their
PLC equipment to us which provided us a realistic hardware setup.

We feel grateful for the CAD-file of the transportation machine AP&T gave
us in order to create a simulation. At last, a thanks to Visual Components
for providing us with two free "Trial Licences". Without the equipment, the
CAD-file and the licenses this project would not have been possible to pursue.

Foreword
The authors of this project have a background in the field of electrical engi-

neering (specialised in automation and control theory), as well as interest in its
industrial application. Therefore the automation topic Virtual Commissioning
could potentially be a rewarding and developing subject to learn more about.
A possible description of Virtual Commissioning is a 3D-simulation model for
one or several interacting 3D-objects. These objects are supposed to visualize a
systems behaviour. By this technology, adjustments and upgrades in code can
be both tested out safe and be observed before implemented into a real system
[Searcherp].

The task at hand is to evaluate how Virtual Commissioning can be integrated
into Beckhoffs automation software and tested on a 12-axis machine, which is
the scope for this Master thesis [Assemblymag].

The work-load of the project was divided fairly between the authors of this
project. Eric focused on implementing a HMI (Human Machine Interface) -
which was a visual display of all machine functionalities with push buttons.
These buttons could be start, stop, move or reset the machine which were
pushed from the HMI. Christian focused on coding the PackML structure and
alarm handling in TwinCAT. The PackML structure was how the code should
be organized and the alarm handling was the code for dealing with potential
software-errors. Together, the authors created a EtherCAT safety project in
TwinCAT which was connected to a physical "emergency stop" button and a
"safety gate" in the 3D-simulation program. Furthermore, the authors helped
out creating a simulation file from a CAD-file of the 12-axis machine in Visual
Components.

Nomenclature
ADS = ADS is based upon the communication principle "client to server".

Basically, on a network the "server" has functionalities and data which
"clients" have to ask permission for to access. Therefore, the "client"
have to send a request to the "server". Afterwards, the "server" reply if
it can share the server data. In that case, a communication path-way is
built between the "client" and the "server".

AmsNetId = An ADS IP-adress with 48 bits which makes it simpler to find
ADS supported devices. It is basically a IPV4 adress where ".1.1" has
been added to the end of the address.

Contactor = An electromagnetic switch which blocks or opens the current
flow inside an electrical circuit.

CPU = A Central Processor Unit (CPU) is the main device in a computer
which executes a program based upon data it understands.

CRL = A list within the ADS-protocol of a device which keeps track if an
ADS address is correctly configured into another device with support of
ADS. Otherwise, this list will generate a corresponding error message to
the fault that occurred.

Dynamic telegram exchange = Ethernet frames could reach a multiple of
devices in both send and receive direction of a telegram.

ETG = EtherCAT Technology Group is a firm which provides devices for com-
munication system purposes. ETG currently has the most employees in
this branch in the entire world.

Fieldbus Memory Management Unit = The memory manager of a field-
bus which controls how data is allocated in the memory space.

FSoE = A communication protocol over EtherCAT which can send and receive
safety and control-packages.

GVL = Global variable within a global variable list in the PLC-environment.

I/O:s = The inputs (I) and outputs (O) from the physical PLC device.

Integrated Development Environment = An integrated development en-
vironment is a software program that provides a platform for computer
programmers to develop programs in.

MAC = An Ethernet MAC (Media Access Controller) uses a data address
which purpose is to specify the destination and the source of each data-
packet sent on a network.

NC = A controller implemented in a computer for processing numerical data
in different applications.

TCP/IP = A communication protocol that is based upon sending data pack-
ages through an internet connection, by Ethernet or a wireless such.

UDP/IP = A communication protocol that is based upon sending real-time
data packages without internet connection.

Virtual Commissioning = A 3D-simulation model of a system is created
which represents the real factory behaviour..

Visual Components = A 3D simulation program which establish a connec-
tion to PLC software through a ADS-communication.

Contents
1 Introduction 1

2 Theory 2
2.1 The 12-axis machine of AP&T 2
2.2 Visual Components . 2
2.3 Virtual Commissioning . 3

2.3.1 System Structure for Virtual Commissioning 3
2.4 ADS Communication . 4
2.5 Visual Studio . 4

2.5.1 Visual Studio Isolated Shell 4
2.6 PLC . 5
2.7 TwinCAT . 6

2.7.1 Object Oriented functions 6
2.7.2 TwinCAT Motion Control Library 8

2.8 EtherCAT . 10
2.8.1 Functional Principle . 11
2.8.2 The EtherCAT Protocol 11

2.9 Safety over EtherCAT . 12
2.10 TwinCAT Safety (TwinSAFE) . 13
2.11 OMAC PackML . 14

2.11.1 OMAC Standard . 14
2.11.2 Overall layout . 14
2.11.3 Machine Module level . 14
2.11.4 Equipment Module level 15
2.11.5 Control Module level . 15
2.11.6 PackML State Operation 15
2.11.7 PackML Control Commands 15
2.11.8 Production Order . 16
2.11.9 PackML Modes . 17

2.12 Alarm . 18
2.12.1 Event Logger . 19
2.12.2 PackML Alarm . 20

2.13 Drive systems . 20
2.14 Human Machine Interface (HMI) 20

2.14.1 TwinCAT HMI . 21
2.15 Recipe . 23

2.15.1 TwinCAT Recipe Management 23

3 Method 25
3.1 Training . 25
3.2 Acceptance test criterias . 25
3.3 Learning the basics of the function blocks 25
3.4 Industrial transportation machine in Visual Components 27
3.5 ADS-communication with Visual Component 27
3.6 Program structure . 27
3.7 The MAIN-program . 30
3.8 PackML . 31

3.8.1 Implementation of the hierarchy (Machine, Equipment,
Control) . 31

3.8.2 Defining Machine-, Equipment- and Control modules . . . 32
3.8.3 Testing the behaviour of OMAC PackML 32
3.8.4 Machine level . 32
3.8.5 Equipment level . 33
3.8.6 Control level . 34

3.9 EtherCAT Safety . 35
3.10 Alarm handling . 38
3.11 HMI . 42

3.11.1 Running the machine . 43
3.11.2 Recipe management . 45
3.11.3 Internationalization . 45
3.11.4 Publishing the HMI . 45

3.12 Simulation of 12-axis machine . 46

4 Result 49

5 Discussion 50
5.1 ADS-communication . 50
5.2 The model of the machine in Visual Components 50
5.3 Coupling of axes in TwinCAT . 51
5.4 PackML-structure . 52
5.5 Structs . 52
5.6 HMI - Internationalization . 52
5.7 EtherCAT Safety . 53
5.8 Alarm Handling . 53

6 Conclusions 54

7 Further Work 55

8 References 56

1 Introduction
The last step in the engineering process is usually commissioning. The commis-
sioning of an automation system project can take around 15-20% of the total
delivery time. It has been shown that almost 2/3 of the time spent in com-
missioning is spent on fixing software errors. Firstly, this is because all the
hardware needs to be produced, which then can be followed by testing of the
control software. Often the commissioning is performed under very strict dead-
lines which can lead to rushing the development of the control software. This
can result in bugs in the system, that can yield hardware damage.

The idea of Virtual Commissioning is to move a great portion of the com-
missioning tasks to an earlier stage in the project. To make this possible a
simulation model of the system is created which represents the real factory.
The real control system can then be used on the virtual factory. This allows for
software testing simultaneously with the development to verify the functions of
the program. It also makes error detection quicker. Furthermore it could be
used as a "Digital Twin" as well as in education purposes [Assemblymag].

In this project a 12-axis machine for transportation of objects, provided by
APT, is simulated through a program called Visual Components. The machine
consist of four transportation robots. The functionality of the machine will be
coded in Beckhoff’s TwinCAT PLC program. The structure of the code will be
implemented according to the PackML-standard.

AP&T

AP&T is a company that develop high-end production solutions for the
metal-forming industry since the 1960:s. It is a global company that accounts
for sustainable solutions towards their customers. These customers are mainly
in automotive, energy and roof industries. Its main office is located in the
town of Ulricehamn in Sweden. The companys arsenal of products consists of
production machines, presses, metal tools and services for retailers of metal-
forming. APT:s goal is to achieve the highest possible satisfaction and safety
for its customers [AP&T_Company].

Beckhoff

Beckhoff is an automation company that has its origin in Germany. Today
it is a worldwide company with the headquarter located in Verl, Germany.
Beckhoff implements open automation system based on PC control technology.
It manufactures products such as industrial PCs, , I/O:s, drive technology and
automation software. Beckhoff’s market idea is to support global and open
control and automation solutions. The application of their products could be
all from CNC-machines to automation for buildings [Beckhoff_Company].

1

2 Theory

2.1 The 12-axis machine of AP&T
The 12-axis machine is a transfer-machine of metal objects. In comparison to
other similar machines on the market, the energy consumption of this machine
is told to be 50 % less. One functionality is that the control unit to this machine
can be maneuvered by smartphones or tablets. The machine also has support
for observation of its status and statistics regarding production. Furthermore,
this machine can be programmed to move around in a specified amount of axis
directions in 3D-space. The movement itself is a linear one, from one point to
another, so called PTP (Point-To-Point) [AP&T_Automation].

2.2 Visual Components
Visual Components is a 3D-simulation program which belongs to the top tier
within their branch. The main goal of this company is to increase availability
and simplify the use of its own products towards its customers. The program
can take CAD-files (computer drawings) and convert them into simulation files
which can be programmed to move in X,Y and Z direction in 3D. This can
for instance be the 12-axis machine mentioned previously (see Section 2.1) (see
Figure 1).

In order to communicate with another program, Visual Components uses
ADS (Automation Device Specification) (see Section 2.5) for this to work [Beck-
hoff_ADS] (6). As previously mentioned, a "client-server" connectivity has to
be established. One typical application could be ADS connectivity between a
PLC-software program and [VisualComponents_ConnectPLC].

Currently, Visual Components holds a position as a primary trademark
within simulation software for industrial applications among automation brands.
Two brands who can integrate this software with their own are Beckhoff and
Siemens.

The office headquarter is located in Finland, in the city of Espoo. Secondary
offices are located in USA and Germany. Otherwise, they have business-partners
and retailers located all around the world [VisualComponents_About].

Figure 1. Linear 12-axis machine simulated in Visual Components.

2

2.3 Virtual Commissioning
The meaning of Virtual Commissioning is somewhat self-explanatory. Virtual
means simulated on a computer or a computer network. Commissioning includes
designing, installing, testing, operating and maintaining industrial systems ac-
cording to the requirements. As mentioned in the introduction the commission-
ing can take 15-20% of the total delivery time. Any method of reducing this
time would therefore be of interest for the industry.

A large portion of the commissioning (60-70 %) is actually spent on fixing
software errors. By moving the commissioning tasks to an earlier state it in-
creases the chances of avoiding mistakes by simply running tests as the code
is written [Siemens]. This makes it possible to reduce the overall time for the
commissioning. Another aspect is that this method also reduces the risk of
hardware damage. In traditional commissioning the software has to be tested
on the real machine. If the software would contain any bugs it could result in
damage on the machine. By using Virtual Commissioning this can be avoided
by observing the behaviour of the simulation and prevent any hardware damage
from happening [VisualComponents_VC] . Furthermore it can be used to cre-
ate a "Digital Twin" which would allow for components to be replaced by the
digital replica. This could, for example, be replacing sensors upon breaking. It
can also be used in education purposes.

2.3.1 System Structure for Virtual Commissioning

The system structure for Virtual Commissioning consists of four parts. Control
system, Plant, Simulated Plant and Simulated control system. This structure
and its communication between the different parts enable a fully functional
realization of an industrial factory (see Figure 2) [CTH] (11).

The Control system’s purpose is to provide control data sent from the physi-
cal PLC device to the Plant and the Simulated plant [Beckhoff_WindowsControl].
For this to work, the same control data has to work with both the plant and its
simulation [VisualComponents_VC] (10).

The Plant represents the real industrial factory with all the machines and
devices that are connected to it. The commissioning of a plant could imply
manufacturing of products within production lines. Production lines mean the
chain of machines that in a chronological manner carry out jobs to finish a
product [CollinsDictionary].

The Simulated control system could for instance represent an EtherCAT (see
Section 2.8) simulation which runs I/O:s through an EtherCAT cord. When this
happens I/O-information can be sent to represent real machine data. That data
could represent signals like motor or sensors connected to machines [Beckhoff_E-
CATSimulation].

The Simulated plant is supposed to imitate the real factory plant behaviour
by a 3D-visualization. Here software tests can be done by simply coding or
adjusting I/O values so the behaviour resembles a real plant [VisualCompo-
nents_VC].

3

Figure 2. The system structure of Virtual Commissioning.

2.4 ADS Communication
The ADS protocol uses the transport layer inside a software program of a device
to communicate with other devices holding ADS. The purpose for this protocol is
data management between different software programs on one or several devices.
The protocol enables whatever device on a connected network to interact at any
point in time.

The principle behind ADS is called client-server. Firstly, an ADS request
is sent out from the client device on the network. Eventuelly a server device
reacts by an indication message. Secondly, the server sends a response message
to the client device and after that a communication pathway is built. Once the
pathway has been constructed, data traffic commences between the client and
the server [Beckhoff_ADS].

2.5 Visual Studio
Microsoft Visual Studio (VS) is an IDE (Integrated Development Environment)
provided by Microsoft. Its area of use is to develop websites, web apps, web
services, mobile apps as well as computer programs. To make this possible VS
uses software development platforms from Microsoft such as Windows Forms,
Microsoft, Silverlight, Windows API etc.

VS includes a code editor together with code refactoring. Furthermore the in-
tegrated debugger can handle both machine-level debugging and source-level de-
bugging. VS is applicable for 36 different programming languages while allowing
the debugger and code editor to support practically any programming language
(provided that there exists a language-specific service) [VisualStudio_IDE].

2.5.1 Visual Studio Isolated Shell

In this project the Visual Studio Isolated Shell (2013) is used. It enables VS part-
ners to build applications and tools on top of the VS IDE. While in integrated

4

mode, its possible to release a VS extension for customers to use (who have not
yet installed VS). In isolated mode you can release a custom application that
makes use of subset of the features of VS IDE [VisualStudio _IsolatedShell].

2.6 PLC
Simply put, a PLC is a programmable logical controller - a PC aimed for ap-
plications in industrial systems. Whenever there exist a need for control of
devices the PLC can connect these devices’ software together so they can per-
form tasks. A basic PLC uses a CPU (Central Processor Unit) that controls
a number of inputs which uses logic to achieve outputs for the sought control.
PLCs are programmed to be adaptable, have high robustness (rarely crashes or
give mechanical havoc) and be cheap compared to similar devices [PLCdev].

The TwinCAT PLC is Beckhoff’s main software platform for control ori-
ented tasks. The software platform can make almost any PC into a real-time
controller. TwinCAT includes a multi-PLC system, programming environment,
operating station and a NC axis control. Up to four parallel PLC’s can be run
independently on the same time-window for one runtime system. The runtime
system means the program which compiles the code from top to bottom with
all given inputs and outputs. The time-window will then be the execution time
for this compilation. Furthermore, the TwinCAT PLC follows the programming
standard IEC 61131-3 [Beckhoff_E-CATG]. This standard enables up to five
different programming languages to be used for the PLC. One common lan-
guage is ST (structured text), which means that the code has to be written in a
high level manner. In TwinCAT the high level functions consider mostly if, case
and for -statements that could be used to write logical code [Beckhoff_PLC].

A typical PLC device used by Beckhoff is the CX5140. Its main character-
istics is that it has low power consumption and is built without fans for cooling
the device. This PLC can install software for TwinCAT runtime (XAR) and
be usefull to both PLC or Virtual motion (simulate movement of virtual axes)
applications. It has two gigabit supported Ethernet connections and also four
USB 2.0 connections. The operating temperature of the PLC device ranges
from -25 to +60 degrees in the surrounding environment [Beckhoff_CX5140]
(see Figure 3).

Figure 3. The CX5140 PLC from Beckhoff.

5

2.7 TwinCAT
TwinCAT is Beckhoff’s own software which is used to develop programs. The
TwinCAT software uses parallel real-time systems to manage control programs
and the software development environment. TwinCAT executes programs based
on an accurate time-and priority management. This provides a highly deter-
ministic behaviour without interfering with the processor tasks.

Both hardware and software that are from open system PC’s need valid
control and support to prevent errors. Therefore TwinCAT has a built-in mea-
surement tool, called Jitter-indicator, which keeps track of real-time Jitter that
affects signals in the software [Beckhoff_WindowsControl]. When a signal has
jitter it means that the signal has some sort of delay. The delay could for ex-
ample be variations in phase or time-period of the signal [ElectronicDesign].
Once a jitter appears, the Jitter-indicator will send a system message in the
software-program that informs the programmer about how and when it happen
[Beckhoff_WindowsControl].

2.7.1 Object Oriented functions

The following sections will describe some functionalities that can be used in the
TwinCAT software.

Object Function block

A function block is a data file that returns a number of values decided by the
programmer when compiled. The function block is called upon by an instance,
a new copy of the same function block. Function blocks can also implement
object method and object action data types [Beckhoff_FunctionBlocks].

Object Method

The object oriented method consists of expressions in PLC code that has to
be connected to either a function block or a program. A method takes input
data through a call, computes a result and sends it back to the place it was called
upon as output data. Data which is sent into a method is declared VAR_IN
within the method. Data the method sends back is declared VAR_OUT within
the method. The data which is compiled within the method exists only while
the method runs [Beckhoff_Method].

Object Action

The object oriented action is a number of code lines (structured text) that
only runs when called upon. The action does not have declarations and uses
data created from function blocks or programs [Beckhoff_Action] .

Global Variable

A global variable is a variable or a constant that is defined in the entire
solution of a project and can be used from all locations in the solutions code.
These variables must be created in a global variable list (GVL) of the type

6

VAR_GLOBAL to be used. Writing to a variable can be done through call
upon the name of a list followed by a "dot" and the variable name, for instance
"GVL_Default.bSensor" [Beckhoff_GVL].

Struct

The data type struct is a construction of an object with one or more input
variables [Beckhoff_Struct]. A way to see a struct is like an interface - an empty
function-shell with inputs that once called upon can be implemented and given
functionality [MIT]. An example of a struct could be a Polygon line with a few
inputs; a starting point, intermediate points and an endpoint. To use a struct,
it either has to be added from a PLC library or it has to be manually created
within a PLC project [Beckhoff_Struct].

NC Axes

TwinCAT has numerous types within its Numerical control systems (NC),
but for this project the focus is put on "slave axes" and "master axes". The
"slave axes" functionality depends on values generated from the master axes
they are coupled too. In spite of coupling or decoupling, these axes have no
functions themselves. Instead they operate in linear response to the "master
axis". The master axis deals with all movement; for instance start, stop and jog
which the coupled slave axes will imitate [Beckhoff_NCAxes].

7

2.7.2 TwinCAT Motion Control Library

This section will describe the function blocks that are used throughout the
project.

MC_Power

MC_Power makes motion control software enabled for an axis when the
signal "Enable" equals true. Once enabled, by setting either or both "En-
able_Positive" or "Enable_Negative" to true, it will make a virtual axis sup-
port movement in one or two directions. To make an axis controllable by other
MC functions blocks, the "Override" signal must be set to a value above 0.
Furthermore, the "Override" signal can be set between 0 to 100 % - how much
the current velocity should be overridden (see Figure 4).

Figure 4. MC_Power function block.

MC_Reset

MC_Reset basically resets the virtual axis it is called upon. A common
event is that connected devices to the axis also get reset. To enable the reset
the input signal "Execute" needs to be set true. For turning the reset off, the
"Execute" simply has to be set false. When the resetting is finished, an output
signal "Done" will flag this by giving true (see Figure 5).

Figure 5. MC_Reset function block.

MC_MoveAbsolute

MC_MoveAbsolute sets a destination "Position" and moves towards it when
an input signal "Execute" is true. Once the targeted position has been reached,
the output signal "Done" gives a flag by outputting true. Parameters that
have to be set to a defined value larger than zero if an NC axis should move is
Velocity, Acceleration, Deceleration and Jerk. This function block can be used
by several types of axis systems, mainly linear though. A useful functionality is
that MC_MoveAbsolute can be used to move master to slave coupled axes (see
Figure 6).

8

Figure 6. MC_MoveAbsolute function block.

MC_Halt

MC_Halt halts an axis movement by a braking procedure when "Execute"
is set to true. However, this action will not lock the axis from moving. Once the
output signal "Done" flags true - "Execute" can be set to false again. Parameters
that has to be set to a defined value larger than zero if an NC axis should be
halted is "Deceleration" and "Jerk". Fortunately, MC_Halt can be applied for
master to slave coupled axes. Although, using this function block will uncouple
the master to slave configurations. Therefore, the previously coupled axes have
to be re-coupled again once MC_Halt has been called upon (see Figure 7).

Figure 7. MC_Halt function block.

MC_Stop

MC_Stop forces a stop to an axis movement by turning all function blocks
execute flags to false when "Execute" is set to true. This is different from
MC_Halt which would not turn off execute flags of other function blocks. Unlike
MC_Halt the MC_Stop will lock an axis from moving. Once the output signal
"Done" flags are true - "Execute" can be set to false again. Parameters that
has to be set to a defined value larger than zero if an NC axis should be stopped
is "Deceleration" and "Jerk". MC_Stop can also be applied for master to slave
coupled axes (see Figure 8).

Figure 8. MC_Stop function block.

9

MC_GearIn

MC_GearIn uses a linear coupling between the master and slave axis. How
big effect the master has on the slave is affected by the "RatioNumerator/
RatioDenominator" ratio. The higher the ratio, the more the slave will move
relative its corresponding master and vice versa. To be noted, a slave can only
be coupled to a halted/stopped master axis. Additionally, more than one slave
can not be coupled to a master axis on the same time. The "InGear" output
signal gives a true signal when a coupling is completed. Once a master to slave
coupling has given "InGear" equal to true for the function block, the next slave
can couple to the master (see Figure 9).

Figure 9. MC_GearIn function block.

MC_GearOut

MC_GearOut removes the current coupling between a master and its se-
lected slave axes. When the "Execute" signal is set to true, the out-gearing
commences and when the "Done" flag gives true, the out-gearing was success-
ful. To make the function block ready for a new gearing, the "Execute" signal
should be set false again (see Figure 10) [Beckhoff_Motion].

Figure 10. MC_GearOut function block.

2.8 EtherCAT
The ETG (EtherCAT Technology Group) is a firm which provides devices for
communication system purposes. ETG currently has the most employees in this
branch in the entire world.

ETG are partners with IEC (International Electrotechnical Commission).
EtherCAT and Safety over EtherCAT follows, IEC 61158 and IEC 61784, re-
spectively [EtherCAT_Company].

10

For a long time Ethernet communication has had technical problems with
efficiency in managing the exchange of data-packages in telegrams. These prob-
lems are resolved through EtherCAT communication. Nowadays, the Ethernet
packages are no longer accepted, analyzed and copied as a work process at ev-
ery time cycle. Instead, a Fieldbus Memory Management Unit (FMMU) for
each I/O terminal analyses the data addressed to it, while a telegram contin-
ues through the device. In the same manner, input data enters the telegram
while it passes through. This process is called Dynamic telegram exchange (de-
scribed more in the following section). The delay-time for this exchange is a few
nanoseconds in duration.

2.8.1 Functional Principle

First the EtherCAT master sends a telegram that passes through each node.
Each EtherCAT slave device then reads the data that is addressed to it "on the
fly", which means that they will read the data as the telegram is moving. When
the data is read it gets inserted into the frame as the frame moves downstream.
The only delay the frame experiences is the one from the hardware propagation.
The last node in a branch/segment will detect an open port and send the message
back to the EtherCAT master using Ethernet Technology’s full duplex feature.

In terms of performance, the EtherCAT technology makes advanced control
tasks a possibility which traditional field bus systems could not manage. An
example is that Ethernet systems can handle both velocity and current con-
trol of drive systems simultaneously, instead of only velocity control. Since the
bandwidth has increased by 80%, status updates between data-packages in tele-
grams can be achieved. Furthermore, 1000 I/O:s can communicate within 30
microseconds. Another feature is that the bus system is no more a bottle-neck
of the system speed . Now the technology exists to actually reach speeds up to
10 000 Mbit/s [Beckhoff_E-CATFast].

The only node (within a segment) allowed to actively send an EtherCAT
frame is the master. All other nodes merely forward the frames downstream.
The purpose of this concept is that it prevents unpredictable delays and guar-
antees real-time capabilities.

The master is using a standard Ethernet MAC (Media Access Controller)
without an additional communication processor. This makes it possible for the
master to be implemented on any hardware platform which has an Ethernet
port (regardless of which real-time operating system or application software is
used). The slave uses an EtherCAT Slave Controller (ESC). This controller
processes frames "on the fly" and entirely in the hardware. This allows network
performance to be predictable and independent of the individual slave device
implementation [EtherCAT_Function].

2.8.2 The EtherCAT Protocol

The payload of the EtherCAT is embedded in a standard Ethernet frame. The
frame is identified in the EtherType field with the Identifier (0x88A4). The use

11

of protocol stacks, such as TCP/IP and UDP/IP, can be eliminated since the
EtherCAT protocol is optimized for short cyclic process data (see Figure 11).

Figure 11. EtherCAT in a standard Ethernet frame.

TCP/IP connections can optionally be tunneled through a mailbox chan-
nel without impacting the real-time data transfer. This is done to ensure the
Ethernet IT communication between the nodes.

During startup, the master maps and configures the process data on the
slaves. It is possible for different amounts of data to be exchanged with each
slave (from one bit to a few bytes, or even kilobytes of data).

The EtherCAT frame consists of one or more datagrams. The header of
the datagram indicates what type of access the master would like to execute
[EtherCAT_Function]. This could be:

• Read, write, read-write ;

• Access to a specific slave through direct addressing, or access to multiple
slaves with logical addressing (implicit addressing);

2.9 Safety over EtherCAT
Modern communication systems are able to both realize the deterministic trans-
fer of control data as well as enable the transfer of safety-critical control data
through the same medium. With this very purpose EtherCAT utilizes the pro-
tocol FSoE (Fail Safe over EtherCAT). This protocol allows:

• A Single communication system both for safety and control data;

• The ability to flexibly expand and modify the safety system architecture;

• Pre-certified solutions to simplify safety applications;

• Logical integration of the safety design in the machine design;

• Powerful diagnostic capabilities for safety functions;

• The ability to use the same development tools for both safety and standard
applications;

With Safety over EtherCAT, the communication is part of a "Black Chan-
nel". A "Black Channel" means that the communication medium, an EtherCAT
cord for instance, sends data-packages that are both safe and not-safe. The stan-
dard communication system EtherCAT uses a single channel for the transfer of
both standard and safety-critical data. The Safety Frames (known as Safety
Containers), consist of safety-critical process data with some additional infor-
mation used to secure this data. These Safety Containers are transported with
the communication’s process data. Whether the transfer of the data is safe or

12

not does not depend on the underlying communication technology and is not
restricted to EtherCAT. The Safety Containers can be transported through field-
bus systems, Ethernet (or similar technologies), as well as make use of copper
cables, fiber optics and even wireless connections (see Figure 12) .

Figure 12. The Safety Container is embedded in the cyclical communication’s process data.

The safety-connection of different parts of the machine becomes more simple
with this flexibility. The Safety Container goes through the various controllers
and is processed in the various parts of the machine. This makes the emergency
stop functions easy to implement. Its simple to either bring the whole machine
or targeted parts of the machine to a standstill. This is allowed even if parts of
the machine are coupled with other communication systems (such as Ethernet)
[EtherCAT_Function].

2.10 TwinCAT Safety (TwinSAFE)
TwinSAFE from Beckhoff enables convenient expansion of the Beckhoff I/O
system with safety components in addition to integration of all of the cabling
for the safety circuit within the existing fieldbus. It is possible to mix safe
signals with standard signals without restrictions. The TwinSAFE telegrams
are handled by the standard controller.

The TwinCAT Safety PLC is used to link safety-related inputs and FSoE
outputs. TwinCAT Safety PLC realizes a safety-related runtime environment
on a standard industrial PC.

ESTOP

The "emergency stop" (ESTOP) button can be connected to two normally
closed contacts on a safe input terminal on an EL1904 safety-card (see Figure
13). The EL1904 safety-card contains all safety related software that needs to
be implemented for EtherCAT safety. These types of safety cards all begin
with "EL" and have similar functionalities and end with 4 digits; in this case
"1904" which displays what model it is. The monitoring and testing of the
discrepancy of the two signals are activated. The feedback and restart signals
are connected to standard terminals and transferred to TwinSAFE through the
standard PLC. The Contactor K1 and K2 are connected in parallel to the safe
output [Beckhoff_SafetyCard].

13

Figure 13. The EL1904 safety-card for ESTOP.

2.11 OMAC PackML
Often in a factory there are several of machines involved. These machines could
be (and often are) from different suppliers which means that they most likely
are using different program structures. However, when controlling a factory it
is preferable to have some kind of overlaying structure so that the communica-
tion between the machines is simplified. This is exactly the purpose of OMAC
PackML.

2.11.1 OMAC Standard

The OMAC standard was created to give a unified guideline how the layout
of machines’ operations and included units should be organized. This aims to
simplify integration of new machines’ into industrial applications for machine
suppliers. For the "End User" this unification will enable integration with su-
pervisory control systems. Mainly, because all interfaces are coherent and units
of data types are similar for the interfaces [OMAC].

2.11.2 Overall layout

A typical PackML machine has three levels of hierarchy in this descending order:
Machine module, Equipment module and Control module. To break down the
code-structure in these parts makes it easier if a project has several programmers
to coordinate and monitor the software (see Figure 14).

2.11.3 Machine Module level

The Machine level is the top layer of the PackML interface and what controls
all other components. Although, the Machine is not just the primary program,
it is also either HMI (Human Machine Interface) or OI (Operator Interface).
HMI and OI is the visualized graphics on a physical screen that connects the
machine operator to the machine (described later in the report). Furthermore,

14

the machine level is what actually runs the machine. This level takes input
from the machine operator and gives instructions to the Equipment modules
and deals with alarm or fault messages from Equipment modules.

2.11.4 Equipment Module level

The secondary level in the PackML interface and perhaps the most meaningful
one. The sole purpose of an Equipment module is to perform an instructed
function completely. An Equipment module directs the work to the Control
module to complete a function. Additionally, there can be an unlimited amount
of Equipment modules.

2.11.5 Control Module level

The lowest level in the PackML interface and the separate devices which per-
forms tasks like motion of a motor. However, they can not complete a function
without support of an Equipment module which instructs them. For instance,
an axis block where several Equipment modules have axes, but they use each
axis for different things. Although, the Equipment modules use the same Con-
trol modules for the motion along the axis [Beckhoff_Framework].

Figure 14. Code Hierarchy.

2.11.6 PackML State Operation

All machines with PackML configuration need modes and states to operate
in. Assigning states/modes to different functionality is a must to make the code
understandable and consistent while finding flaws becomes simpler too. Further-
more, it will prohibit so called "unintended consequences". Meaning that you
should distinguish states/modes so they will not affect any other states/modes
if something goes wrong. The optimal result for a machine is to always stay
in the "Execute" state the whole time. In the "Execute" state the machine
operates or is ready to take new instructions every time [OMAC].

2.11.7 PackML Control Commands

To go from one state to another state in the PackML state model, a command
signal has to be sent. These commands are defined as ST_PMLc - Structure
of a PackML command. To keep track of the status between the layers and

15

command signals the ST_PMLs - Structure of a PackML status was defined.
The procedure of the command in the unit/machine Control System may be
combined with public or private machine conditions. Public means change of
global variables that can be reached anywhere in the code structure. Private
means change of local variables that can be reached within one single location
in the code structure - a map for instance. However, the unit/machine always
needs to listen for incoming commands, even if the machine code will not make
a state movement.

There are in total 10 state commands that can contribute to a change of
PackML state, but only 8 will be mentioned here. From figure 14, all 17 PackML
states and the corresponding state commands can be seen.

The first state command is Start, it moves the machine from an Idle to a
Starting state.

Next one is the Hold command. This command should be executed when
an internal error occurs in the source code or if a new job is expected dur-
ing Production or Maintenance mode. It moves the machine from Execute to
Hold state. Eventually the machine will be moved from a Hold state into an
Unholding state.

From Unholding the machine goes to Execute by an Unhold command.
The State Complete (SC) command is an inner command that moves the

machine to the next state and is used everywhere in the PackML interface model.
The Stop command will move the machine towards a Stopping state where

it is halted. The Stopping command can be called from everywhere, except the
light grey zones and white zones seen in Figure 15.

The Reset command can be commanded from the Machine operators HMI
or decided to be automatic. Once a Reset command is sent, the state transfer
is between Resetting and Idle state.

The Abort command can be sent automatically when an E-stop button is
integrated for the machine. Otherwise, its called manual by the machine oper-
ator. This command can be called from any state in the PackML state model.
The reached states will be Aborting where the machine is first halted and then
power is shut off.

The Clearing command can then be used after the Aborting state has reached
Aborted state. This command will make the Clearing state reset faults that
occurred in previous state and power on the machine again [OMAC].

2.11.8 Production Order

For starting a production process, the Start signal must be triggered from an Idle
state. When SC (State Complete) is achieved from Starting state, the Execute
state is reached. Here the machine is operating until a Hold command a Stop
command or an Abort command appear. When a Hold happens it goes into Hold
and halts followed by going to Held. Here it waits until an Unhold signal is given
and then from the Unholding state a SC will make the machine go into Execute.
Once a production order is completed a Stop command will be generated which
makes the machine go to Stopping state and halt here. Afterwards it goes
by a SC to Stopped and wait for a Reset signal. Through a SC signal the
machine is back in Idle state once again and everything repeats. When an Abort
command appears the machine immediately halts and goes to Aborting state.

16

Once finished a SC makes the machine go to Aborted. From there a machine
operator has to press Clear command to reach Clearing state. Once faults are
fixed and power is on the machine reach Stopped state through a SC and awaits
a Reset command. Whenever the Reset command happen the machine enters
Resetting and moves the machine into its initial positions. Through a SC the
next state will be Idle and everything repeats [Beckhoff_Framework] (see Figure
15).

Figure 15. PackML State Model of Production mode.

2.11.9 PackML Modes

There are three different types of PackML modes in the OMAC standard. The
top one is Production mode, the middle one is Maintenance Mode and the
bottom one is Manual Mode. These modes can be switched between while the
machine works in the Aborted, Stopped or the Idle state (see Figure 16).

The Production (Automatic) mode is based upon a normal automatic work
sequence for an industrial process and includes total functionality of the PackML
states.

The Maintenance (Step-in) mode generally has the same functionality as
Production mode but every section or separate sections of the machines can be
tested. This could be useful for testing code structure and error detection.

The Manual mode can be used for manual operation to test simple functions
of the machine like moving, stopping or resetting [Yaskawa].

17

Figure 16. PackML State Model of Production mode (top), Maintenance mode (middle)
and Manual mode (bottom).

2.12 Alarm
To have a functional alarm system can inform the machine operator before
an error occurs or how to fastest deal with the current error. For production
in a factory the uptime is essential. The uptime means the amount of time
the factory actually produces goods or so called commissions [ControlEngineer-
ing_Alarm].

For purpose of an efficient alarm handling in the TwinCAT there exists a
program called "Event Logger". Its a database that "logs "events", which means
stores and reacts to alarms of different kind. Furthermore, in the TwinCAT
library there exists an alarm struct of PackML - ST_Alarm. A new function
block which combines functionality of the "Event Logger" and ST_Alarm can
create a functional alarm handling [Beckhoff_EventLogger] .

18

2.12.1 Event Logger

The TwinCAT Event Logger takes inputs from "Event Classes" and dissembles
them into two groups of events, "Messages" or "Alarms". "Event classes" are
sets of "Events" blended together. The Event Logger efficiently communicates
with the TwinCAT HMI, the TwinCAT XAE (runtime) and the TwinCAT XAR
(environment) by exchanging data between the programs (see Figure 17).

Figure 17. TwinCAT EventLogger.

Each Event has an Event-ID making it unique within an "event class". Every
event has a "Text" string, information about the Event. There is also a "Source
Info", information about where and how the event appeared. Furthermore, there
exist a JSON attribute String to each "Event" [Beckhoff_EventLogger]. The
JSON (JavaScript Object Notation) means a small and understandable text for
organising data used in XML code [SquareSpace].

An "event class" can be created from a "TMC-editor" program from the
"Type System" in the PLC. Each "event class" can also be edited and opened.
Additional "event classes" that could be created are ADS return data and other
system related ones (see Figure 18).

When creating a new PLC-project a global variable GVL_TC_Events is
created inside the PLC. TC_Events contains "Event Classes" as input to it
and refreshes after saves in the "TMC editor". In the TC_Events the inputs
are, "event-ID", "Severity class" and "UUID". The "Severity class" can be set
by the programmer as a number, 0 to 6 and the higher the number the more
critical it is. For the scope of this thesis only the "Severity classes" "Warning"
and "Error", which corresponds to the values 4 and 5 are used. The "UUID"
(Universally Unique Identifier) is a number that defines a unique event [Beck-
hoff_EventLogger].

19

Figure 18. TMC-editor for TwinCAT EventLogger.

2.12.2 PackML Alarm

As previously mentioned, the PackML alarm handling uses a struct called
ST_Alarm. This struct constitutes of a "Trigger signal", an "Id" number, a
"Value", an error "Message", an error "Category" and two arrays storing up to
six time occasions each called "DateTime" and "AckDateTime". "DateTime"
means when an error has happen and "AckDateTime" when an operator read
the error message [Beckhoff_Alarm].

2.13 Drive systems
A typical drive could be a speed drive system which is supposed to manage the
speed and torque of a motor. One way to tune such a motor is by adjusting
physical loads so the drive responds to varying loads.

Drives have different applications within mathematical computations and
could be advanced to implement. Some common features could be to use gates
with boolean logic (AND, OR etc.) and PID regulators with control data.
Another feature of a drive system is that it enables a simple integration between
the PLC and its HMI since all data exist within the PLC.

To program drive systems through PLC code could be challenging, both in
terms of difficulty and time. Generally, control data for the drive systems can be
passed on between different manufacturers’ software, which reduces the number
of programs an engineer needs to use. An example of this could be if Beckhoff
would implement control data from Siemens [ControlEngineering_Drives].

2.14 Human Machine Interface (HMI)
When the term "Human Machine Interface" (HMI) first was used it described
all interfaces between man and machine. Today it is most commonly used in

20

industrial- and automation applications. It is one of the most important inter-
faces the operators are working with. The HMI is created using software and the
application can run on any computer/phone/tablet or physical panels (in many
cases) [Cenito]. While HMI is the most common term for this technology, some
other terms could be mentioned: Operator Interface Terminal (OIT), Opera-
tor Terminal (OT), Man-Machine Interface (MMI) or Local Operator Interface
(LOI). It is also not unusual to compare HMI to Graphical User Interface (GUI).
They are similar but not synonymous. GUIs are often leveraged within HMIs
for visualization capabilities [InductiveAutomation].

2.14.1 TwinCAT HMI

TwinCAT HMI is a tool for creating HMIs. Its integrated directly into Visual
Studio (like TwinCAT). For the configuration a graphical WYSIWYG (What
You See Is What You Get) editor is used, which makes it usable without pro-
gramming. From the toolbox (see Figure 19) controls can be arranged on the
UI and mapped with real-time variables (e.g. from the PLC). User controls is
used to create and configure specific controls. It is also possible to develop own
controls by using JavaScript. The functionality can be tested from the real-time
system with live data as the development is ongoing. During this "live mode"
modifications are also possible.

Figure 19. Toolbox from the TwinCAT HMI.

The logic of the HMI can be implemented either as a server extension or on

21

the client side in JavaScript. Furthermore the server extension allows to develop
extensions in C#.

The resolution and orientation of the HMI will adapt automatically. This is
because the HMI is responsive and web-based (based on HTML5 and JavaScript).
Thus it is possible for the same page to be used for different display aspects,
ratios, sizes and orientations.

The following section will explain the tools used from the HMI toolbox in
this project [Beckhoff_HMI].

Desktop

The start page of the application is called "desktop view". This is the base
platform to create the visualization. To increase the tidiness the visualization
of the desktop is often split into various parts. This is done by creating various
content objects. These content objects can then be displayed at desired places
on the desktop. A common method is to firstly divide the desktop into regions
on which the content will be displayed.

Content

The content (content control) is an independent container object that can be
visualized in a region. The content is used as a base for the creation of all sorts
of tools, such as buttons, textblocks etc. It is also possible to create regions
within a content. This makes it easy to get a good structure of the program
when it comes to handling several "pages".

Region

A important tool is the regions. It is a container for content controls. By
using a special attribute it is possible to define the "Target Content", i.e. choose
which content to be displayed in the region.

Button

The button provides visual feedback when the background is switched. In
other words, it is a simple switching element. With the button comes various
"operator events", which allows the button to be programmed to do certain
things as the event is fired. These events can be actions such as "OnPressed"
(executed as the button is pressed) or "onStatePressed" (executed as long as
the button is pressed).

Toggle Button

Another type of button is the "Toggle Button". Like the regular button
its a switching element. What differs is that it can switch between two states.
With the "Toggle Group" attribute it is possible for several toggle buttons to
interact with each other. An example of this is that if one toggle button is
already activated, by activating another button it would be deactivated.

22

Textblock

A "Textblock" is simply a control in which a text can be displayed.

Event Grid Control

The "Event Grid Control" is used to display alarms and messages. It is
a tabular that automatically displays the alarms and messages of the target
system. It is possible to confirm alarms directly in the control.

Changing the language

In TwinCAT HMI there are localized text defined by key/value pairs. It is
possible to add several translations for each key. In the localization editor each
language can be edited. Where it is desired to use several languages these are
simply defined in the localization file and called upon by the key when using it
in the HMI.

2.15 Recipe
Recipes that are used in production processes are simply stores of data, which
are specified to a particular product. This data can be called upon and then
implemented to produce the product. The recipe contains a set of parameters
important to the production process .

The area of application for recipes is only when multiple products are being
produced. In the case of a single product, the parameters for the production are
stored in the automation system and repeated time after time. On the other
hand, when multiple products are being made and the parameters among them
vary, recipes make it possible to quickly and precisely change from one product
to the next. The alternative would be to have an operator change the parameters
manually each time a change of product is needed [Automationdirect].

2.15.1 TwinCAT Recipe Management

The recipe management in TwinCAT enables the activation of symbols, which
are managed in recipes. Online values from the development environment as
well as from the visualization clients can be saved by the target system in a
recipe.

Recipe types and recipes

There is a fundamental distinction between recipe types and recipes. A
recipe type is a general description of a set of symbols. With the recipe type as
a base it is possible to create various recipes. Values for the symbols, which are
defined in the recipe type, can be saved in a recipe.

Recipe Management Sample

Beckhoff provides a recipe management example which serves as the point of
entry to the recipe management and can be extended as desired. The example
consists of a TwinCAT HMI project, which can be copied and used for own
practice (see Figure 20).

23

Figure 20. The Recipe Management Sample from Beckhoff.

The functions of the recipe management are described below.

Recipe selection: The available recipe types are displayed in the combo box.
If there exists a recipe inside a folder, the relative path to the recipe is displayed.
The purpose of the combo box is to handle the selection of the recipes that is
used as a basis for the other fields an buttons in this example-program.

Teach and activate recipe:

• Teach selected recipe - Currently selected recipe is taught again which
means that the current online values are adopted from the PLC and saved
in the recipe.

• Teach as new recipe - With the current online values from the PLC (on
the basis of the currently selected recipe) a new recipe is created. For this
to work a new name for the recipe must be entered in the text box.

• Activate selected recipe - The currently selected recipe is activated which
means that the values that are stored in the recipe are written to the PLC.

• Delete selected recipe - The selected recipe is deleted.

Display and edit recipe: Enables the display and editing of the recipe symbols
(members) of the selected recipe.

• Datagrid - Currently selected recipe is loaded and the members are dis-
played in the data grid. The column "New value" has two functions.
Firstly, it is used to receive new values from the members of the recipe,
which are saved by using the button "Update selected recipe". Secondly,
it is used to display the current online values of the members for the pur-
pose of comparison with the stored values. This is done by clicking on the
button "Read values from target".

• Update selected recipe - Saves recipe with the new values from "New
value".

• Read values from target - Reads out the current online values of the recipe
members and displays them in "New value".

24

3 Method

3.1 Training
The first approach of achieving fundamental knowledge of TwinCAT was to take
courses in TwinCAT Basic and TwinCAT Motion. TwinCAT Basic focused
on giving an overall view of coding, libraries, documentation, functions and
different types of PLC code. TwinCAT Motion focused on how to run both
virtual and real motors on an axis for machines and even synchronize motors
together.

3.2 Acceptance test criterias
To clarify what actually needs to be achieved some acceptance test criterions’
were defined. The following points show which requirements the machine should
fulfill.

• Simulate the function of the machine;

• The machine should operate in VC environment;

• The 12 axes should be coupled to three virtual axes in the PLC;

• Implementation using the PackML-structure;

• Alarm handling;

• Safety:

– Emergency stop;
– Open protective gates around the machine;
– Jog the machine with constant contact control;

• EtherCAT simulation;

• Simple HMI:

– 3D-coordinates for the machines axis should be visualized in the HMI;
– Start/stop/jog the machine through buttons;
– Recipe function;
– Error acknowledgement button;

3.3 Learning the basics of the function blocks
The following sections describe the approach of learning the basic functionality
of the most common motion blocks in the TwinCAT environment.

MC_Power

The first step was to create an axis. To do this the library TC2_motion had
to be imported. This was followed by making an axis called "AxisRef" with
reference to AXIS_REF. To turn the power on the axis the MC_Power block

25

was used. To use the block the input "Axis" was set to AxisRef followed by
setting "Enable", "Enable_Positive" and "Enable_Negative" to true. When
the output "Status" was true the axis was turned on and able to take further
instructions.

MC_MoveAbsolute

The second function block that was tested was the MC_MoveAbsolute. This
was initiated by setting the inputs: "Axis" to AxisRef, "Position", "Velocity,
"Acceleration", "Deceleration" and "Jerk" to desired values. The motion was
then started by setting "Execute" to true. When the output flag "Done" became
true this indicated that the motion had completed.

MC_Reset

Furthermore the function block MC_Reset was tested. This was simply
done by using the MC_Reset block on the AxisRef and setting the "Execute"
to true. When the output "Done" was true the function block had succeeded.

MC_Halt

While the axis was in motion and supposed to brake in a controlled fash-
ion to zero speed the function MC_Halt was executed. To do this the inputs
"Deceleration" and "Jerk" was set to desired values. MC_Halt was then called
upon the AxisRef followed by setting the input "Execute" to true which would
halt the axis. As for the other blocks when the flag "Done" became true it was
an indication that the block was done and in this case the motion had halted.

MC_Stop

While the axis was in motion and supposed to stop immediately the function
block MC_Stop was executed. To do this the inputs "Deceleration" and "Jerk"
was set to desired values. MC_Stop was then called upon on the AxisRef
followed by setting the input "Execute" to true which would stop the axis. Like
for the halt case, when the flag "Done" became true it was an indication that
the block was done and the motion had been stopped.

MC_GearIn

The next step was to create several axes and try to couple them. To create
more axes the same procedure as before was used. When two axes (AxisRef
and AxisRef2) were available the function block MC_GearIn was tested. This
was done by setting the inputs: "Master" to AxisRef, "Slave" to AxisRef2,
"RatioNumerator" and "RatioDenominator" to 1, followed by setting "Accel-
eration", "Deceleration" and "Jerk" to reasonable values. When setting the
"Execute" to true the block would begin. As the flag "InGear" became true the
coupling was done.

26

MC_GearOut

To decouple a slave axis from its master the MC_GearOut was called upon.
This was done by setting input: "Slave" to AxisRef. When setting the "Exe-
cute" to true the block would begin. As the flag "OutGear" became true the
decoupling was done.

3.4 Industrial transportation machine in Visual Compo-
nents

When receiving the model of the 12-axis machine it was time to start separating
the axes of the machine. Since the model was only a step-file (CAD-file) there
were no dynamics predefined. To separate the axes a specific tool in Visual
Components was used, the modelling tool. This tool made it possible to choose
in detail (down to the very last screw) which components that were going to
operate on which axis. As the robots were composed of four 3-axis modules
this had to be performed on each one of them. Additionally, this modelling tool
was used on the Y-axis lifters which the four robots were attached to. Once the
whole model had its dynamics defined, all the axes were set to move along a
straight path in either X,Y or Z -direction.

3.5 ADS-communication with Visual Component
When some basic knowledge about the PLC interface was gained, it was time to
learn more about how ADS communication can be established between a Twin-
CAT PLC and Visual Components. By activating configurations with I/O:s and
licenses as well as running TwinCAT in the PLC project, the PLC was ready to
operate. In Visual Components, ADS mode was configured by enabling online
mode as well as configuring a server for ADS. Once the server configuration
was done on Visual Components, the ADS pathway could be established be-
tween Visual Components and TwinCAT. There were two options, "simulation
to server" and "server to simulation". Through "simulation to server" Visual
Components generated code which gave values in TwinCAT, for example a co-
ordinate or a sensor signal. Correspondingly, "server to simulation" meant that
TwinCAT generated code to Visual Components, for example motor signals or
command signals to different axes.

3.6 Program structure
The next step was to figure out the Program structure of the PLC code - how
everything should be arranged in relation to PackML, coding structure and the
system structure.

OMAC PackML

The OMAC PackML model has in general cases 17 states, up to 18 if an
"ESTOP" (electronic stop) state is included. Although, three of the states

27

regarding Suspending of the machine was decided not be included in this project.
The reasoning was that information about the surrounding environment where
the machine could operate was beyond the scope of this thesis. However, states
regarding Holding was kept since internal faults could occur in the source-code.
When internal faults occurs, the machine should be able to pause so a machine
operator could go and fix the issue. Another thing that the holding states should
handle is when the machine is starved (which very much could be the state in
this project).

The "ESTOP" state got to be an external state outside the PackML struc-
ture. It was called from any state in the structure, and both stops and aborts
any current process. The only way to return back to the machine states were
that specified safety conditions had to be fulfilled by the machine. Based upon
these specifications, 15 states of the PackML were decided to be implemented.

Coding Structure

In terms of coding structure of the machine; Control modules, Equipment
module and Machine module were organized for the machines’ different axes.
Therefore, the specific functions of an axis, such as making it go up/down etc.
would be implemented in a control module. The plan was to implement three
control-modules for the machine, regarding X,Y and Z-axis direction. Further-
more, one Equipment module was used to simulate the four transportation
robots to follow the same programmed route. Finally, one Machine module
was implemented to call the Equipment module and handle the HMI of the
machine. Examples of the HMI functions where start, stop, jog and "ESTOP",
which were implemented for the machine operator.

28

System Structure

In terms of the system structure , one laptop, one PLC device and the 12-axis
machine were chosen (see Figure 21, 22 and 23).

Figure 21. The system structure of the laptop.

Figure 22. The system structure for the CX5140 with the Machine PLC-project
and Simulation PLC-project.

Figure 23. The system structure of the 12-axis machine.

The programming environment (XAE) was on the Laptop - where all code
was written and also Visual Components to simulate the 12-axis machine (see
Figure 21). All the data that was transferred between the Laptop and Machine
PLC was done by ADS (see Section 3.5).

The CX5140 PLC device used two PLC projects, the Machine PLC-project
and the Simulation PLC-project. In the Machine PLC-project, the code for

29

PackML modules, the EtherCAT safety, the Alarm Handling and the HMI were
held. The Simulation PLC-project had code which was responsible for the
EtherCat simulation. The EtherCAT simulation meant to handle a real-time
fieldbus communication together with I/O:s. Both the Machine PLC-project
and the Simulation PLC-project were sharing the same PLC run-time (XAR)
since they were existing in the same PLC-solution. The Machine PLC-project
and the Simulation PLC-project were also connected together by an EtherCAT
cable connection through a CU2508 EtherCAT switch (see Figure 22).

The full system structure was then including the 12-axis machine to be able
to replace the Simulation PLC-project (see Figure 23). Basically, disconnecting
the Simulation PLC-project from the I/O:s and pluging the I/O:s back into the
12-axis machine. Thereafter all coding would be generated from the Machine
PLC-project directly into the 12-axis machine and back. In theory the 12-axis
machine should operate in reality the same way as the simulation would in
Visual Components (see Figure 24).

Figure 24. The full system structure of all communicating devices.

3.7 The MAIN-program
The MAIN-program was what actively ran the PLC code in both the Machine
PLC and the Simulation PLC. The MAIN-program would then call upon the
current Machine module state, which then calls the corresponding state in the
Equipment module and then the Control module. As previously mentioned, the
three Control modules could handle movement, stop, reset and coupling. Hence,
running the MAIN-program, makes the 15 virtual axes run (12 slave axes and
3 master axes). Through declaration of position variables in the Equipment

30

Module, the coordinates of the 15 axes could be updated. The run-time (XAR)
of TwinCAT would then yield an update frequency of the position variables
every 10 ms.

3.8 PackML
As previously mentioned, the code of the PackML structure took the use of
the run-time (XAR) of the Machine PLC (see Figure 25). To implement the
PackML structure it was decided to be the first out of the four major code parts
to be implemented.

Figure 25. Inclusion of PackML in the system structure.

3.8.1 Implementation of the hierarchy (Machine, Equipment, Con-
trol)

The first procedure was to implement PackML maps for each of the three Con-
trol modules. The control modules would implement ten acting states and one
execute state. The acting states worked sequential once a requested signal en-
tered the state (see Figure 15).

The second procedure was to implement PackML maps for the single Equip-
ment module. Here three folders were created, one for manual, one for produc-
tion and lastly one for maintenance. In the manual folder, ten acting states were
used for jogging and testing of the four transportation robots, either separately
or together. Additionally, for both the production map and the maintenance
map all ten acting states were implemented.

The last procedure was then to implement on PackML maps for the Machine
module. Like in Equipment module, three maps were created to include all the
modes. In the manual map, the states instructed the Equipment modules to
use its manual states. Likewise, in the production map the Machine module
instructed if the Equipment module should use its production states. In the
same way the Machine module could then instruct the Equipment module to
use the maintenance states.

31

3.8.2 Defining Machine-, Equipment- and Control modules

In this project the Machine module was chosen to be equivalent to the "factory
level" or "production line level". This meant that the Machine module would
control every machine in the factory or production line (which in this case only
was the 12-axis machine).

The Equipment module was simply chosen to be the 12-axis machine.
Lastly the Control modules were chosen to handle simple tasks like power

up an motor. Therefore three Control modules were defined for X, Y and Z.

3.8.3 Testing the behaviour of OMAC PackML

When the actual PackML base had been created with folders it was time to
start running some code in the states to observe the behaviour of the structure.
To begin with, this was done by simply enabling the axes in the aborting state
at the Control module level. Since initially (when starting the program) the
Aborting state was the state running, the axes were enabled as soon as the
PLC went into Run-mode. Furthermore some code in the "Clearing" state was
written that would reset the axes and move to some given position. For this code
to run the machine had to be commanded with a Clear-command, which was
done on the machine level by setting the "MachinePMLCommand" to Clear. A
lot of similar tests was executed to get a better understanding of the behaviour
of the structure.

To send information about what code that ran on a lower level module to
a higher level module an interface of type I_PTP was created at each PackML
level. The interface I_PTP used MC2_functions which controls point-to-point
movement. When an Equipment module called upon the values of a Control
module, it had to create I_PTP instances to map the Control module I_PTP
outputs to it. One I_PTP instance had to be declared for each of the 12 virtual
axes for this to work. Within each instance, the 12 virtual axes were connected
to one of the three corresponding master axes.

3.8.4 Machine level

In this section the functionality of each state is described for the Machine mod-
ule.

Idle

The "Idle" state was only implemented for the Manual mode. Here the
machine operator made a decision which axes that should be jogged right now.
Once done with the decision, an automatic "Start" command would be sent and
eventually the "Starting" state got reached.

Held

The "Held" state was only implemented for the Production and the Main-
tenance mode. Here a boolean signal "bSensor" simulated when a conveyor

32

had a product ready to be picked up by the four transportation robots. While
"bSensor" equaled false, the current mode would remain in the "Held" state.
Once "bSensor" equaled true an "Unhold" command was sent and eventually
the "Unholding" and then finally the "Execute" state would be reached.

3.8.5 Equipment level

The following section describes the functionality of the states in the Equipment
module.

Starting

In the Starting_Production, the starting values were set for MC_MoveAbsolute.
Once finished, a SC command would be sent and the "Execute_Production"
state eventually reached.

In the Starting_Manual, the starting values of the MC2_Jog and MC_GearIn
were implemented. Furthermore, the coupling was activated for the chosen axes
in "Idle" state. When all the chosen axes were coupled a SC command would
be sent and the "Execute_Manual" state eventually reached.

In the Starting_Maintenance, the starting values were set for MC_MoveAbsolute
and MC_Halt movement. Once finished, a SC command would be sent and the
"Execute_Maintenance" state eventually reached.

33

Execute

In the "Execute" production sequence the machine started of in a "Hom-
ing" position and moved to a "Waiting" position in X,Y and Z. Then when
a "bSensor" signal gave true from a conveyor (a product ready), the 12-axis
machine went to a "Grab" position in X,Y and Z to pick up an object. Once
finished, the 12-axis machine went to a "Destination" position in X. Thereafter,
the axes were lowered to the "Drop" position in Y and Z direction to drop of
the product. Additionaly, all the axes of the 12-axis machine went back to the
"Wait" position to repeat the same procedure again. The procedure would start
of immediately if "bSensor" gave true. When "bSensor" gave false the 12-axis
machine stayed in "Waiting" position.

For Execute_Manual the execute process was based upon jogging of the ma-
chines, separately or together. The axes which were coupled from the "Starting"
state could now be moved in X,Y or Z direction.

The Execute_Maintenance sequence was the same as for Execute_Production
while the "Step Forward" button was toggled. However, when the "Home" but-
ton was toggled the master axes in X and Y position moved back to a homing
position.

3.8.6 Control level

Here the functionalities of each state at the Control module is described.

Aborting

The first operating state to be implemented was "Aborting". Through an
Abort command from every possible state, the 12-axis machine were halted and
their power turned off. Once halted and power turned off, a SC command moved
the current state to "Aborted".

Clearing

Next operating state to be implemented was the "Clearing" state. By a Clear
command from the Aborted state, all errors and axes couplings were reset. Once
all axes were reset their power was put "on" again. When these procedures were
finished, a SC command moved the current state to "Cleared".

Resetting

The Resetting state had three different implementations. One for Produc-
tion, Manual and Maintenance mode.

In Resetting_Production, all axes were moved to their "Home" position in
X,Y and Z Control module. Thereafter all "slave" axes were coupled to their
corresponding "master axis" in X,Y and Z Control module. When this was
finished for each Control module, they sent a SC command to go to "Idle"
state.

34

In Resetting_Manual, the Resetting state was not implemented and only
sent a SC to reach "Idle" state.

In Resetting_Maintenance, all axes were moved to their home positions in
X,Y and Z Control module when a "Homing" button was toggled. Once all the
home positions were reached, the "Home" button got deactivated. Thereafter
all "slave" axes were coupled to their corresponding "master axis" in X,Y and
Z Control module. When this was finished for each Control module, they sent
a SC command to go to "Idle" state.

Stopping

The Stopping state had the same implementation for Production and Main-
tenance and a different one Manual mode.

In Stopping_Production, the Stopping state was not implemented and only
sent a SC to reach "Stopped" state.

In Stopping_Manual, at first all three master axes in X,Y and Z were halted.
Once halted, they were all decoupled. When all the axes were decoupled, the
"Stopping" state sent a SC to reach the "Stopped" state.

In Stopping_Maintenance, the Stopping state was not implemented and only
sent a SC to reach "Stopped" state.

Holding

In the "Holding" state all master axes in X,Y and Z axes were halted. Once
all master axes were halted a SC was sent and the "Held" state eventually got
reached.

Unholding

In the "Unholding" state only a SC was generated and eventually the "Ex-
ecute" state got reached.

3.9 EtherCAT Safety

The next major coding step was to implement the EtherCAT safety. Firstly,
the 12-axis machine needed an "ESTOP" functionality which was planned to
be replaced by a physical emergency stop button. This emergency stop button
could be pressed down whenever by the machine operator and should both stop
and turn off the 12-axis machine. Secondly, it was investigated the possibility
of using a "Safety-gate" on an outer safety environment around the 12-axis
machine. The "Safety-gate" itself should stop and turn of the 12-axis machine
when opened, otherwise do nothing. The outer safety environment was supposed
to be constructed in Visual Components around the 12-axis machine (see Figure
26).

35

Figure 26. Inclusion of EtherCat safety in the system structure.

ESTOP Safety

When the three main Execute modes had been implemented it was time
to investigate EtherCAT security. The first step was to physically connect an
EtherCAT safety card to the PLC - an EL6910 with TwinSafe I/O:s. Once
connected physically a safety project could be created within the PLC pro-
gram. This safety project would check if any PLC data got corrupted or a fault
appeared on the virtual axes for the PLC.

Next step was to bind the the "ESTOP" button to an abort command on
the safety card so the machine could stop whenever a security breach occurred.
To start off, two boolean global variables were mapped as inputs to the PLC
from a Safety card to check the safety in the PLC. The variables were called
"bSafetyOk" and "bSafetyOkDel" that always were true, unless an error ap-
peared which turned them false. Then it was written two additional boolean
global variables that were mapped as outputs - from PLC to safety card. They
were called "bErrorAck" and "bRestart". "bErrorAck" equaled true when a
machine operator would be aware of an error and toggle it on a HMI or false
otherwise. "bRestart" would need to be set true from a machine operator when-
ever an "ESTOP" command would require a new trigger, otherwise it could be
false.

Furthermore, to test the "ESTOP" button the plan was to set an entrance
condition outside all the code in the Machine states for the three different modes.
The condition was to press the "ESTOP" button which would make "bSafe-
tyOk" turn false. By an if statement checking when "bSafetyOK" equaled false,
a "MachinePMLCommand" was generated that sent an "Abort" command to
all levels of the hierarchy. Then the Machine module, Equipment module and
the Control module would enter the Aborting state. Once the "Abort" Com-
mand happened "bErrorAck" would turn false as well as for "bRestart". Then
the machine operator manually has to set these variables true through the HMI
and send a "Clear" Command. While the "ESTOP" button was reset and not
pushed down "bSafetyOk" turned true, and all the PLC code would run normaly
(see Figure 27).

Once the condition was implemented, the next step was to test the "ESTOP"
in the Execute_Production, Execute_Manual and Execute_Maintenance states.

36

Here the "ESTOP" button was pushed down while the machines were running
and they would immediately halt and go from Execute to Aborted state. Once
the four transportation robots were decoupled and all the faults reset it could
go through all states back to Execute.

The next step was to make "ESTOP" work in the Resetting_Production
and Resetting_Maintenance states. Here the "ESTOP" button was pressed
down while a "Homing" sequence. Then the four transportation robots would
immediately go from Resetting to Aborted state. Like in the case of execute,
the four transportation robots were decoupled and had all their faults reset and
could eventually go back to Reset

Figure 27. TwinSafe I/O "ESTOP" card.

Guard safety

After the implementation of eStop safety, the next safety card to implement
was Guard safety. A copy of the same EtherCAT safety card was used for this
occasion - an EL6910 with TwinSafe I/O:s. However, the input and output
signals had other purposes. This safety card was added to the current safety
project within the PLC program. Then it would check if a pair of "magnetic
sensors" would loose contact, and then cut the current to the PLC. This was
simulated by the use of a boolean PLC variable "bOpenDoor", generated from
the HMI. This was visualized in VC (Visual Components) as a door open at
90 degrees. The door was located at a safety zone around the four industrial
transportation robots. When "bOpenDoor" became true it meant that the
"magnetic sensors" lost contact. On the contrary when "bOpenDoor turned
false the "magnetic sensors" had contact again.

Furthermore, two boolean global variables were inputs to the PLC from a
"Guard safety". These variables were "eStopIn1Guard" and "eStop2Guard"
supposed to symbolize two "magnetic sensors". By using two input pins on the
EtherCAT "Guard safety" card the "eStopIn1Guard" and "eStopIn2Guard"
could be realised. When the two parts of the "magnetic sensor" would be kept
away from each other ("bOpenDoor" equal true), the "eStopIn1Guard" and

37

"eStopIn2Guard" gave true signals. On the contrary when they were in con-
tact ("bOpenDoor" equal false), both "eStopIn1Guard" and "eStop2Guard"
gave a false signal. To send an output to the PLC from the "Guard safety"
card a new boolean global variable called "bGuardOk" had to be created.
"bGuardOk" equaled true when "eStopIn1Guard" and "eStopIn2Guard" were
false - meaning safety alright. On the opposite, "bGuardOk" equaled false when
"eStopIn1Guard" and "eStop2Guard" were true - meaning safety not alright.
Another boolean global variable was declared as output called "bRestart2".
"bRestart2" was set to the value of "bRestart" since they were supposed to
work on the same way. "bErrorAck" was now mapped to both the "eStop
safety" card and the "Guard safety" card. Like in the case of "eStop Safety",
"bErrorAck" equaled true when a machine operator is aware of an error and
toggle it on the HMI (see Figure 28).

Additionally, to test a the "magnetic sensor" the plan was to add an condi-
tion to the if statement used for the "eStop Safety". The new condition would
then be if "bSafetyOk" equal false or "bGuardOk" equal false. Once these
conditions go to false a "MachinePMLCommand" was generated that sent an
"Abort" command to all levels of the hierarchy. Then the Machine module,
Equipment module and the Control module would enter the Aborting state.
Once the Abort command happened "bErrorAck" would turn false as well as
for"bRestart2". Then the machine operator manually had to set these variables
true through the HMI and send a Clear command.

Figure 28. TwinSafe I/O Guard card.

3.10 Alarm handling
To inform the machine operator when a problem was about to appear inside
the machine an alarm handling was required. The two different types of alarms
that were decided to be implemented were "Warning" and "Error". A "Warn-
ing" was needed since it could inform that a fault was about to happen and
an "Error" when a fault had already happened. Consequently, two methods
had to be created in the Machine PLC - M_AlarmInstances and the other one

38

M_Safety. Both of these methods were declared and implemented in the Ma-
chine module and the Control Module. For the Equipment module only the
M_AlarmInstances was needed to be implemented (see Figure 29).

Figure 29. Inclusion of Alarm handling in the system structure.

To create a specific alarm for one "event" each one of them needed the
function-block type fb_AlarmPackML. This was repeatedly done for all "events"
at Machine, Equipment and Control module. The fb_AlarmPackML imple-
mented the following attributes; "Event type", "Alarm trigger signal", "Jason
attribute string", "Alarm type", "Reset signal for alarm" and "Alarm message"
(see Section 2.12.1).

Machine module

M_AlarmInstances had four function block instances declared. One named
fbAlarm_eStop, the second fbAlarm_Guard, the third fbAlarm_DeadGrip and
lastly fbAlarm_Door.

fbAlarm_eStop monitored the alarms regarding emergency stop ("eStop").
Its alarm trigger signal was set to "bSafetyOk" equal false and "bSafetyFirst-
PowerCycle" equal true. In case "bSafetyOk" turned false, corresponding to
the physical "eStop" button being pushed, the function block started larming.
When "eStop" was reset, implying "bSafetyOk" equaled true, then the alarm
got turned off. The "bSafetyFirstPowerCycle" was a boolean variable set to
true during start up of the program. This would prevent the fbAlarm_eStop
alarm to trigger when starting it.

fbAlarm_Guard tracks the alarms regarding the physical magnetic sensor.
Its alarm trigger signal was set to "bGuardOk" equal false and "bSafetyFirst-
PowerCycle" equal true. When "bGuardOk" turned false, corresponding to the
two magnetic sensors away from each other, the function block started larming.
When together again the alarm would reset, implying "bGuardOk" to equal
true which would turn the alarm off. The boolean "bSafetyFirstPowerCycle"
was used in the same way as for fbAlarm_eStop function block.

fbAlarm_DeadGrip reacted to the alarms regarding the grips of the four
industrial transportation robots. When the robots have grip, that results in a
signal "bGrip" turning true. On the contrary when they do not, resulting in

39

"bGrip" turning false. The alarm trigger signal "bDeadGrip" turns to true in
either of three different cases, which will be described in M_Safety.

fbAlarm_Door gave a response as an alarm connected to a simulation of an
open door in Visual Components. The alarm trigger signal "bOpenDoor" was
triggered to true or false through by the HMI menu. This will be described in
detail in M_Safety.

In M_Safety the conditions from the function block alarms on Machine
module level were written. Both fbAlarm_eStop and fbAlarm_Guard were
checked with the same conditions and fbAlarm_DeadGrip and fbAlarm_Door
separately.

For fbAlarm_eStop and fbAlarm_Guard a case statement was created which
checked "eMachineStateSTS" that described the current machine state. When-
ever the state was either "Undefined", "Aborting" or "Aborted", the EtherCAT
safety variables were toggled true. These variables were "bRestart", "bRestart2"
and "bErrorAck" presented in the EtherCAT safety section. When the current
machine state was "Clearing", these variables were set to false. In any other
occasion of the current machine state, the "bSafetyOk" and "bGuardOk" were
checked. If one of them got a false value then a "MachinePMLCommand" was
generated as "Abort" which would move the machine into "Aborting" state.

For fbAlarm_DeadGrip there were three safety conditions to be checked.
Therefore, when the "bGrip" was true and either the "ESTOP" button was
pressed (true) or the "bDoorOpen" true or the reached state was "Aborted".
In anyone of these events the fbAlarm_DeadGrip would trigger. When that
happened an "MachinePMLCommand" of Abort was sent and all modes were
locked except "Manual" mode. Now the machine operator had to choose "Man-
ual" mode when in "Aborted" state and move the product after choosing the
jog axes to run. Once the machine operator has jogged the decided axes to new
positions, pushing the "bGrip" button on the HMI unlocks all modes again.

For fbAlarm_Door there was only one safety condition considering "bOpen-
Door". When "bOpenDoor" turned true the fbAlarm_Door Alarm started to
trigger and the "Door angle" switched to 90 degrees in Visual Components indi-
cating an "Unsafe" environment. When fbAlarm_Door trigger this would also
send out "MachinePMLCommand" of Abort and lock all modes except "Man-
ual" mode. Like the fbAlarm_DeadGrip case all axes have to be moved and a
"bGrip" button pushed on the HMI.

Equipment module

M_AlarmInstances now had four 14 function block instances declared. First
one named fbStartingSeqAlarm and the second one fbExecuteSeqAlarm. Among
the remaining 12 they were declared as fbManualJogAlarmX, fbManualJogAlarmY
and fbManualJogAlarmZ. Four each in X,Y and Z corresponding to the 12 in
total virtual slave axes.

The fbStartingSeqAlarm was supposed to monitor alarms happening "Start-
ing_Manual" state. The alarm trigger signal was set to "stStartingSeq.bFault".

40

If "stStartingSeq.bFault" was true, this would alarm fbStartingSeqAlarm. Cor-
respondingly, when "stStartingSeq.bFault" was false, this would then turn off
fbStartingSeqAlarm. This signal was written to only trigger if a coupling error
appeared within the "Starting_Manual" state.

The fbExecuteSeqAlarm was supposed to track alarms happening in all
modes for the "Execute" state. The alarm trigger signal was set to "stExe-
cute.bFault". If "stExecuteSeq.bFault" was true, this would alarm fbExecute-
SeqAlarm. Correspondingly, when "stExecuteSeq.bFault" was false, this would
then turn off fbStartingSeqAlarm. This signal was written to only trigger if a
PTP-movement, jogging or a halt error appeared within the "Execute" state.

For the fbManualJogAlarms in X,Y and Z, they were supposed to warn the
machine operator whenever the transportation robots were close to each other
or lower/upper boundaries in position.

The alarm trigger signals were set to "bAlarmTrigX", "bAlarmTrigY" and
"bAlarmTrigZ" for each of the four slave axes in each axis direction. When-
ever the signal turned true, the fbManualJogAlarm would start alarming and
informing the machine operator what boundary exception had been reached.
On the contrary, when the signal turned false, the fbManualJogAlarm would
stop alarming.

Control module

Here, M_AlarmInstances had 17 function block instances declared in each
Control module X,Y and Z. Four named fbAbortingSeqAlarm, four fbClear-
ingSeqAlarm, one fbResettingSeqAlarm, four fbStoppingSeqAlarm and finally
four aAxisAlarms.

The fbAbortingSeqAlarm was supposed to monitor alarms happening in all
modes for the "Aborting" state. The alarm trigger signal was set to "stAbort-
ingSeq.bFault". If "stExecuteSeq.bFault" equaled true, this would alarm fbAbort-
ingSeqAlarm. Correspondingly, when "stExecuteSeq.bFault" equaled false, this
would then turn off fbStartingSeqAlarm. This signal was written to only trigger
if either a stop or a power-off error occurred within the "Aborting" state.

The fbClearingSeqAlarm was supposed to track alarms happening in all
modes for the "Clearing" state. The alarm trigger signal was set to "stClear-
ingSeq.bFault". If "stClearingSeq.bFault" equaled true, this would alarm fb-
ClearingSeqAlarm. Correspondingly, when "stClearingSeq.bFault" equaled false,
this would then turn off fbClearingSeqAlarm. This signal was written to only
trigger if a reset, decoupling or a power-on error occured within the "Clearing"
state.

The fbResettingSeqAlarm was supposed to react to alarms happening in all
modes for the "Resetting" state. The alarm trigger signal was set to "stRe-
settingSeq.bFault". If "stResettingSeq.bFault" equaled true, this would alarm
fbExecuteSeqAlarm. Correspondingly, when "stResettingSeq.bFault" equaled
false, this would then turn off fbStartingSeqAlarm. This signal was written

41

to only trigger if a PTP-movement or a coupling error appeared within the
"Resetting_Production" or the "Resetting_Maintenance" state.

The fbStoppingSeqAlarm was supposed inform about alarms happening in
the Manual mode for the "Stopping" state. The alarm trigger signal was set to
"stStopingSeq.bFault". If "stStopingSeq.bFault" equaled true, this would alarm
fbExecuteSeqAlarm. Correspondingly, when "stStopingSeq.bFault" equaled false,
this would then turn off fbStartingSeqAlarm. This signal was written to only
trigger if a halting or decoupling error appeared within the "Stopping_Manual"
state.

The aAxisAlarms was supposed to yield alarms happening in all states
and modes within the Control modules. The alarm trigger signal was set to
"bAlarmTrig" and each one of the four slave axes in the control module got
a separate trigger signal. If "bAlarmTrig" was true, this would alarm fbExe-
cuteSeqAlarm. Correspondingly, when "bAlarmTrig" was false, this would then
turn off fbStartingSeqAlarm. This signal was written to trigger only when an
"NC"- error occurred in a state.

For M_Safety there was a need for conditions to handle when the aAx-
isAlarms function blocks should alarm. Whenever a "fbAxis.bError" would
appear on an axis, this would activate the variable bAlarmTrig to true. Conse-
quently this would then set aAxisAlarms into alarming mode. After the alarm
had been reset, then "bAlarmTrig" was set to false which stopped aAxisAlarms
from alarming.

3.11 HMI
The next step of the project was to create the HMI. This was done by using the
software TwinCAT HMI (see Figure 30).

Figure 30. Inclusion of HMI in the system structure.

The first step in TwinCAT HMI was to create the desktop view. This was
followed by creating several regions (in the desktop view) corresponding to the
desired positions. For example, a region was created for the head menu-bar.
Then the content was made for each region. In the case of the head menu-bar
each button had different contents. The contents had to be connected to a
region. The connection was done by choosing the attribute "Target Content".

42

The buttons were programmed so that upon pressing the desired region, it
would display the corresponding content. This procedure was repeated for all
the buttons.

It was also preferable to have an active/not active state of the buttons in
the head menu-bar. For this to be done an integer variable was created and
each button was given a (id)value (0 −→ 7). Furthermore, the buttons were
programmed so that if the "current number" was equal to the id of the button
it would display the "active"-background (blue). Likewise it would display the
"not active"-background (black) in the rest of the cases.

Another criteria was to be able to see the positions of the different axes. This
was done via the ADS-communication. Firstly, a server had to be configured
by assigning the correct AmsNetId of the CX5140. This made it possible to
connect variables in the PLC to the HMI. The only thing needed to be done
was making Textblocks and map the position of the axes (from the GVL).

3.11.1 Running the machine

When creating the buttons for the PackML-signals (Reset, Abort, Clear etc.)
they were simply mapped to the PLC so that upon pressing it would set the
corresponding signal to true.

One of the most important contents was the "sequence-content". Here the
positions of the axes were displayed as well as the buttons for the commands (Re-
set, Abort, Clear etc) and the modes (Production, Manual and Maintenance). In
this content a textblock was created to illustrate which current mode/state the
machine was in. Furthermore, a region was created on which different contents,
depending on which mode the machine was operating in, were to be displayed.

Manual mode

In the case of the Manual mode the sequence content was programmed to
display only the Abort and Clear button since these were the only commands
needed in this mode.

Furthermore buttons was created for the machine to jog forward/backward
as well as buttons for choosing which axes to jog. The buttons on which would
choose the axes was programmed that upon pressing, a green border would be
displayed to indicate that the axis is gonna be able to be jogged. A button for
turning the "Power on" (Jog-mode on) was also created. This button would
make the program go into the execute-state so that the operator can jog the
machine. Furthermore, a button that would simulate a constant contact con-
troller was created. This button was to simulate whether the constant contact
controller was pressed or not when jogging.

Additionally the function to choose the velocity in each axis (X, Y, Z) was
created. This was done by making buttons for three different choices of velocity.
The "High" velocity button would set the velocity in X to 300, Y to 100 and Z
to 100. The "Medium" velocity button would set the velocity in X to 100 while

43

setting Y and Z to 50. Lastly the "Low" velocity button would set the velocity
in X to 3 and Y and Z to 1.

Production mode

In Production mode the sequence content was to display the "Abort", "Clear",
"Reset" and "Start" button, which were the desired buttons in the production
mode. Moreover, one button to indicate whether a job is ready or not for the
machine was created.

Four indicators (in shape of circles) were made with the purpose to display
whether the machine was done with the "gripping" or not. This was done by
mapping these indicators (circles) to the "bFeedbackGrip" values in the PLC.
If the four transportation robots had completed the gripping the corresponding
indicators would display a green background. On the contrary if the gripping
was not completed the indicators would display a red background.

These indicators were later moved out of the "mode-region" to be displayed
in every mode.

Maintenance mode

For the Maintenance mode the sequence content was exactly the same as for
the Production mode.

In addition to this a "Step-forward"-button was implemented. This button
would allow the operator to control the running of the machine. Basically, while
the button was pressed, the machine would run the sequence (program) from
the Production mode. When the button was not pressed the machine would
stop the sequence.

Moreover, a "Homing"-button was created. Its purpose was to make it
possible to jog the machine to the homing position at any time the machine was
running.

To handle safety an error acknowledgement function was implemented in
the sequence content. This was executed upon pressing the clear button. This
button was to bring three flags of the "ESTOP"-block and Guard-block (Reset1,
Reset2 and ErrorAck) from true followed by setting them to false. Furthermore,
two rectangles were created to illustrate whether the safety was okay or not.

Lastly a button was created for the function to enter a visualization of which
state the machine currently was in. This was done by choosing the target
content upon pressing the button to "StateChart". The "StateChart" content
was created by importing an overview picture of the PackML-states (see Figure
31).

44

Figure 31. Illustration of current state of the machine.

3.11.2 Recipe management

To aid with the recipe management the example-program from Beckhoff was
used. Firstly, a recipe type was made using the recipe management tab on the
"TwinCAT HMI Configuration"-window. In this recipe type all desired parame-
ters that were to be changed was added. These parameters could be things such
as velocity, acceleration, deceleration, jerk, as well as positions for grabbing and
leaving an object for the different transportation robots. Moreover, it contained
homing-positions for the transportation robots.

For demonstration, two different recipes were created. One that was sup-
posed to move smaller sheets of metal at a higher velocity as well as one for
larger metal sheets at a lower velocity.

3.11.3 Internationalization

It was decided to make the HMI handle three languages: Swedish, English
and Chinese. This was done by creating a localization file for each language.
Thereafter, it was required to create keys for each word in the HMI that was
desired to handle the different languages. For each key, the value was defined
by the desired word in that specific language. An example of this would be a
key "Prod" that have the value "Production" in English and "Produktion" in
Swedish.

When the languages were implemented the only thing left to be done was
to make the altering of the languages an option in the HMI. To do this three
buttons (with the flags of the three languages as background) were created.
Upon clicking on one of these buttons it would set the parameter "SetLocal" to
the corresponding localization file of the language.

3.11.4 Publishing the HMI

The last step when doing the HMI was to publish it to the HMI-server. In
this case the HMI-server was the PLC device (CX5140). For the PLC to be
able to be the server software (TF2000-HMI-Server) from Beckhoff had to be

45

downloaded. When the installation was finished the CX5140 now could host a
HMI-server.

Furthermore, the publishing was done in the TwinCAT HMI program. This
was executed by simply choosing which AMSNETid the HMI-server was located
on and then publish the solution. Once the solution was published, an URL
was achieved which was the link to the web-application of the HMI. It was
now possible for anyone on the same net to use the web-application (via ADS-
connection).

3.12 Simulation of 12-axis machine

Eventually, Visual Components assisted through a python script with code to
change the coordinates of a pallet. Now the pallet could interact with the 12-axis
machine in terms of being "lifted up" and "dropped off". In addition, there were
two conveyor belts and a pallet feeder added to the total simulation. For the
12-axis machine to interact with the pallet, the Machine operator had to step
forward through the PackML states until "Execute_Production" was reached.

At first, the pallet arrived at an "initial position" on the first conveyor belt.
It was supposed to represent an input pallet from an pallet feeder machine
connected to the conveyor belt (see Figure 32).

Figure 32. 12-axis machine at "waiting position and pallet on its "Initial position".

The pallet got transported along the first conveyor belt until it reached a
"Grabbing position" on the X-axis. On this position a sensor signal connected
to a PLC variable, "bSensor", got set to true and informed the 12-axis machine
that a "Job was ready". From this the 12-axis machine could go down and pick
up the pallet from the first conveyor belt (see Figure 33).

46

Figure 33. 12-axis machine and pallet at "grabbing position".

The 12-axis machine would then move to a "destination position" and drop
of the pallet at the second conveyor belt. Since the pallet now had left the
sensor, the connected variable "bSensor" would turn false. This informed the
12-axis machine that a "Job was not ready" (see Figure 34).

Figure 34. 12-axis machine and pallet moving towards "Destination position".

At the "Destination position" the 12-axis machine dropped of the pallet.
The 12-axis machine then returned to the "waiting position". This while the
pallet started moving towards the "travel position" at the second conveyor belt
(see Figure 35).

47

Figure 35. 12-axis machine and pallet at "destination position".

When the pallet eventually reached the "traveling position" the simulation
would repeat itself. Meaning the pallet would start off at its "initial position"
and 12-axis machine at "waiting position" (see Figure 36).

Figure 36. 12-axis machine at "waiting position" and pallet moving towards
"Traveling position".

48

4 Result
The result of this Master Thesis was a successful implementation of Virtual
Commissioning of a machine consisting of four industrial transportation robots.
The total 12 virtual slave axes of the machine were coupled to three virtual mas-
ter axes in the PLC. The functionality of the machine was simulated in Visual
Component. The structure of the code is written in TwinCAT according to the
PackML-structure. Furthermore, a EtherCAT-simulation is used for realising
the signals for the 12-axis machine, which represent the I/O:s of the system.

The program structure was implemented with alarm handling as well as
safety. Within the safety an emergency stop and a guard were implemented.
Moreover, a constant contact controller also existed.

Additionally, a HMI with functions such as recipe management, displaying
axis positions, changing mode, running the machine, simulating errors etc. now
exists.

The hardware for the project consisted of a Laptop, a CU2508, a CX5140
PLC, two EL6910 Safety Cards and an Emergency Stop (see Figure 37).

On the Laptop all the code was written (XAE) in TwinCAT and also the
simulation program Visual Components was used to visualize the 12-axis ma-
chine.

The CU2508 EtherCAT switch connected the code from the Machine PLC-
project and the Simulation PLC-project through an EtherCAT cable.

For the CX5140 PLC both the Machine PLC-project and the Simulation
PLC-project were running and compiled (XAR).

The EL6910 Safety cards were attached to the CX5140 PLC and intercon-
nected by input and output pins.

The Emergency stop button was connected to one of the two EL6910 Safety
cards. The button responded by both stopping and turning of the 12-axis ma-
chine when pushed down.

Figure 37. Electronic hardware for the 12-axis machine

49

5 Discussion

5.1 ADS-communication
When connecting the PLC to VC via ADS-communication some issues occurred.
One of the issues was that VC could not find the PLC for some reason. The
support at VC was then contacted trying to solve the problem. With help from
Beckhoff the complication was that the CRL (Communication Reference List)
searched for the wrong version of TwinCAT (4.1.16.0) when the actual version
was 4.2.169.0. When correcting this (by altering the configuration file of VC)
an ADS-connection could be established.

5.2 The model of the machine in Visual Components
The separation of the axes turned out to be a bit more complicated than ex-
pected. Since a step-file was used, which basically is a blueprint, all the different
components had to be chosen in great detail. This was problematic because
firstly it was hard to distinguish which components that had to be linked. Sec-
ondly, since the modelling tool was very detailed, it was easy to miss internal (or
small) components, such as screws. This made the search for every component
time-consuming and had to be redone several times.

Another issue that appeared in terms of the 3D-model was to place the
orientation of the transportation robots origin. The idea was to have a positive
orientation for all axis directions, so the coordinates of the robots were moving
between zero and positive values. This would hopefully make it easier for the
machine operator to adjust offsets between the robots and make less mistakes.
Initially, it was decided to place the transportation robots furthest to the left on
the x-axis. That would set the origin 0 and also the lower boundary. Since the
length of the machine was 4 m, this was set to be the upper boundary. It was
realised that the closest distance between the adjacent transportation robots
were 0.7 m. Therefore the upper limit for the second and fourth transportation
robot became 4 m. Correspondingly, the upper limit for the first and the third
transportation robot was set to 3.3 m (see Figure 38).

Figure 38. The 3D-model for one side of the 12-axis machine.

50

For further visualization it was tested to attach a pallet to the 12-axis ma-
chine while in movement. This to simulate a realistic production-line where a
sensor conveyor sent a pallet for the transportation machine to pick up. This
was tested using the "Snap" button in the Modelling toolbar inside VC. Al-
though, this did not work since it required further knowledge of the program.
The support of VC was contacted, but they required the simulation file to the
transportation machine (see Figure 39).

However, the support of Visual Components was eventually contacted once
more and they gave a python script for assigning 3-D coordinates to an object.
This was proven useful since now it was possible to attach a pallet to the 12-axis
machine. A virtual PLC-axis in X-direction was connected to the pallet so it
could move in a realistic manner. Furthermore, the pallets 3D-positions was
in some occasions copying the positions of the 12-axis machine when they were
connected.

It was noted that only one pallet could be uniquely connected to the corre-
sponding 3D-coordinates from the PLC project. Consequently, since the lack of
knowledge how to use more pallets, only one pallet was used for the simulation.

Figure 39. Visualization of the 12-axis machine with a conveyor belt.

5.3 Coupling of axes in TwinCAT
It was later on discovered that the MC2 function-block MC_GearOut block had
to be implemented so coupled axes could gear out. Therefore, this function-block
also had to be implemented in each control module like for MC_GearIn. An
issue that was encountered was that the "InGear" signal had to be set down
from the MC_GearIn block before the "OutGear" signal could be triggered.
Therefore both MC_GearIn and MC_OutGear had to be called upon when
gearing out axes.

51

5.4 PackML-structure
In regards to the implementation of PackML for this project it turned out to
be a difficult task. Since the theory of the subject was quite substantial it was
a lot to process. Even though aid was received through meetings and previous
PackML-projects, it was still quite a big obstacle. The example-project that was
received was very detailed which resulted in hard interpretation of the different
sections of the structure. Furthermore, it was troublesome finding other easier
example project with PackML for guidance.

However, after some weeks of analyzing the structure as well as executing
tests on the program it started to make a lot more sense. Initially, the tests
were simply writing some code in some of the states and observe how the code
was executed. This could be for instance writing global variables that worked
as integer counters. Whenever inside a PackML state the corresponding counter
for this state would count up. Through this procedure it was easy to find if a
state was reached and if it was active or not. When active the state counter
would increment and when it was not it stopped counting.

It was eventually discovered that the PackML three level hierarchy compiled
the code in a top-down manner. Firstly, the machine states were compiled and
then the equipment states and finally the control states. However, if a ma-
chine state wrote a "MachinePMLCommand" to reach another state both the
equipment- and the control states would follow it to the next state. Although,
when an equipment state wrote a "EquipmentPMLCommand" only the corre-
sponding control state would follow it.

5.5 Structs
It was proven difficult to use the structs data types within TwinCAT. A possible
reason could be the weak background of object-oriented programming within
the PLC. The structs were not connected to any global variables which could be
reached everywhere within the PLC project. Instead, it was required to create
instances of function blocks within a folder or a file and then call upon a method
that implemented a struct. Thereafter, it was needed to call the method upon
the function block or file and set values within it to make it work. To use
the GearIn-method for a struct was complex to implement since it could not
be reached once called upon from an instance declaration of ST_MC_InGear.
Instead, a new instance of the function block which contained the method from
another folder had to be declared, fbAxis_PTP.

5.6 HMI - Internationalization
Even though the internationalization was fairly simple once understood it would
have been even more simple if this was handled right from the beginning of
the creation of the HMI. Sadly this was not the case here. The function to
handle several languages came up during the later part of the project. At
that time of the project the HMI was nearly finished (with already defined
names of buttons etc.). The names (where internationalization was desired)
of the buttons/textblocks etc. had to be replaced with the corresponding key.
However, this was fixed without any further complications.

52

5.7 EtherCAT Safety

It was proven important to take down all the flags in the "Clearing" states so the
"ESTOP" would not be in-activated when the "Resetting" state was reached.
If this was not done it was impossible to gear in all the axes and moving the
axes to the homing positions. This would maybe not have been necessary if the
MC2_Homing function block would have been implemented. Mainly because it
does not require any MC2_MoveAbsolute calls on the axes.

5.8 Alarm Handling
For the alarm handling it was troublesome finding the proper data structures to
start off. It was eventually required to create a new function block FB_AlarmPackML.
The FB_AlarmPackML implemented both TC_Event classes from the Event
Logger and the St_Alarm from PackML.

53

6 Conclusions
For simulating the function of the robots, VC made it easy for the programmer
to observe the movement boundaries in 3D-space. Therefore it went fast to
calibrate new values for variables declared in TwinCAT to gain desired machine
behaviour.

On each axis there were four slave axes per each X,Y and Z master axis.
Since all code was driven through the three virtual master axes, the coding
and safety management became a lot easier than if the axis had been coded
separately.

To implement the PackML-structure required a lot of theoretical understand-
ing. After the theoretical knowledge had been gained, the programming became
more organized and easy to follow.

To declare a new function block for the alarm handling was proven challeng-
ing. Once this was done, new function block instances could be created simply
within the Machine, Equipment and Control Module levels.

The safety "ESTOP" worked as intended with a "physical" press button that
had to be manually reset. In terms of the "Guard" it was simulated through an
open or closed door in VC. This would imply that a realistic situation can be
created through a door with magnetic sensors.

For the EtherCAT simulation it was efficient to use an extra PLC program
simulating the I/O:s from the Simulation PLC. By this, physical grips for the
transport robots could be simulated through VC into the Machine PLC.

Furthermore, the HMI with the buttons and coordinates gave the machine
operator a simple display to control the machine from. The recipe functionality
in the HMI had to be manually activated in the "Aborted" state. This was inde-
pendent of the machines’ current mode (Production, Manual or Maintenance).
However, the machine operator had to remember pressing the Abort command
before changing recipe.

54

7 Further Work
For further work there are some things to consider. The possibilities with the
EtherCAT-simulation is somewhat endless.

To give an example it would be of much interest to simulate the actual
behaviour of the drives. This would be possible by adding a simulated drive to
the PLC-project and take that into account when writing the code.

Another example would be to have a model of the actual signal from the real
system. The models could be for things such as sensor signals. These models
could be developed in Simulink which could be added to the Simulation PLC.

There are a lot of these simulations that can be created (in principle for the
whole machine). The optimal case would be a Simulation PLC which replicates
the exact behaviour of the real system.

55

8 References

[1]. Searcherp (2018). Virtual Commissioning. https://searcherp.techtarget
.com/definition/virtual-commissioning. (collected, 2019-02-01)

[2]. Assemblymag (2017). How to Virtually Commission an automated man-
ufacturing system. https://www.assemblymag.com/articles/938333-how-to
-virtually-comission-an-automated-manufacturing-system. (collected, 2019-
02-01)

[3]. AP&T_Company (2019). ABOUT AP&T https://www.aptgroup
.com/company/about-apt (collected, 2019-02-06)

[4]. Beckhoff_Company (2018). Beckhoff Automation. https://www.beckhoff
.com/english/beckhoff/default.htm. (collected, 2019-02-04)

[5]. AP&T_Automation (2019). Automation https://www.aptgroup.com/
solutions/product-range/automation (collected, 2019-02-06)

[6]. Beckhoff_ADS (2019). ADS Communication. https://infosys.beckhoff
.com/english.php?content=../content/1033/bc9000/html/bt_ethernet%20ads%
20potocols.htm&id=. (collected, 2019-02-04)

[7]. VisualComponents_ConnectPLC (2019). Connect a local TwinCAT
PLC http://academy.visualcomponents.com/lessons/connect-a-local-twincat
-plc/. (collected, 2019-02-04)

[8]. VisualComponents_About (2019). About us https://www.visualcomponents
.com/about-us/. (collected, 2019-02-04)

[9]. Siemens (2018). Virtual Commissioning ger kortare time-to-market.
https://w3.siemens.se/home/se/sv/industry/nyheter/pages/virtual-commissioning
-ger-kortare-time-to-market.aspx#content. (collected, 2019-02-01)

[10]. VisualComponents_VC (2016). What is Virtual Commissioning https://
www.visualcomponents.com/insights/miscs/increasing-control-software
-quality-with-virtual-commissioning/. (collected, 2019-02-01)

[11]. CTH (2019). Simulation-based verification of PLC programs. http://
publications.lib.chalmers.se/records/fulltext/195493/195493.pdf. (col-
lected, 2019-02-05)

[12]. Beckhoff_WindowsControl (2019). The windows control and automa-
tion technology. https://beckhoff.com/english.asp?twincat/default.htm.
(collected, 2019-02-05)

[13]. CollinsDictionary (2019). Defintion of ’production line’.
https://www.collinsdictionary.com/dictionary/english/production

-line. (collected, 2019-05-30)

56

https://searcherp.techtarget.com/definition/virtual-commissioning
https://searcherp.techtarget.com/definition/virtual-commissioning
https://www.assemblymag.com/articles/938333-how-to-virtually-comission-an-automated-manufacturing-system
https://www.assemblymag.com/articles/938333-how-to-virtually-comission-an-automated-manufacturing-system
https://www.aptgroup.com/company/about-apt
https://www.aptgroup.com/company/about-apt
https://www.beckhoff.com/english/beckhoff/default.htm
https://www.beckhoff.com/english/beckhoff/default.htm
https://www.aptgroup.com/solutions/product-range/automation
https://www.aptgroup.com/solutions/product-range/automation
https://infosys.beckhoff.com/english.php?content=../content/1033/bc9000/html/bt_ethernet%20ads%20potocols.htm&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/bc9000/html/bt_ethernet%20ads%20potocols.htm&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/bc9000/html/bt_ethernet%20ads%20potocols.htm&id=
http://academy.visualcomponents.com/lessons/connect-a-local-twincat-plc/
http://academy.visualcomponents.com/lessons/connect-a-local-twincat-plc/
https://www.visualcomponents.com/about-us/
https://www.visualcomponents.com/about-us/
https://w3.siemens.se/home/se/sv/industry/nyheter/pages/virtual-commissioning-ger-kortare-time-to-market.aspx#content
https://w3.siemens.se/home/se/sv/industry/nyheter/pages/virtual-commissioning-ger-kortare-time-to-market.aspx#content
https://www.visualcomponents.com/insights/miscs/increasing-control-software-quality-with-virtual-commissioning/
https://www.visualcomponents.com/insights/miscs/increasing-control-software-quality-with-virtual-commissioning/
https://www.visualcomponents.com/insights/miscs/increasing-control-software-quality-with-virtual-commissioning/
http://publications.lib.chalmers.se/records/fulltext/195493/195493.pdf
http://publications.lib.chalmers.se/records/fulltext/195493/195493.pdf
https://beckhoff.com/english.asp?twincat/default.htm
https://www.collinsdictionary.com/dictionary/english/production-line
https://www.collinsdictionary.com/dictionary/english/production-line

[14]. Beckhoff_E-CATSimulation (2019). Tc3 Ethercat simulation. https://
www.beckhoff.com/english.asp?twincat/te1111.htm. (collected, 2019-05-
30)

[15]. VisualStudio_IDE (2019). Microsoft Visual Studio. https://en
.wikipedia.org/wiki/Microsoft_Visual_Studio. (collected, 2019-04-14)

[16]. VisualStudio_IsolatedShell (2019). Microsoft Visual Studio isolated
shell. https://visualstudio.microsoft.com/vs/older-downloads/isolated
-shell/. (collected, 2019-04-14)

[17]. PLCdev (2009). Defintion of a PLC. http://www.plcdev.com/definition
_of_a_plc. (collected, 2019-03-25)

[18]. Beckhoff_CX5140. CX 5140 | Embedded PC with Intel ATOM pro-
cessor. IPC, Motion and Automation, first ed. Beckhoff New Automation
Technology, page 230, 2018

[19]. Beckhoff_E-CATG (2019). Ethercat. https://download.beckhoff
.com/download/document/catalog/Beckhoff_EtherCAT_G_e.pdf. (collected,
2019-05-07)

[20]. Beckhoff_PLC (2014). PLC and motion control on the PC. https://
www.beckhoff.com/english.asp?twincat/einlei1.htm/. (collected, 2019-03-
25)

[21]. ElectronicDesign (2016). Whats the difference between jitter and noise?
https://www.electronicdesign.com/test-measurement/what-s-difference
-between-jitter-and-noise. (collected, 2019-05-31)

[22]. Beckhoff_FunctionBlocks (2019). Object Function blocks. https://
infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/
9007201785020555-1.html&id=. (collected, 2019-05-07)

[23]. Beckhoff_Method (2019). Object Method. https://infosys.beckhoff
.com/english.php?content=../content/1033/tc3_plc_intro/9007201785048459
-2.html&id=. (collected, 2019-05-06)

[24]. Beckhoff_Action (2019). Object Action. https://infosys.beckhoff
.com/english.php?content=../content/1033/tc3_plc_intro/2530340747.html&id=.
(collected, 2019-05-06)

[25]. Beckhoff_GVL (2019). Global Variables. https://infosys.beckhoff
.com/english.php?content=../content/1033/tcplccontrol/html/TcPlcCtrl
_ResGlobVar.htm&i=. (collected, 2019-05-06)

[26]. Beckhoff_Struct (2019). Structures (struct). https://infosys.beckhoff
.com/english.php?content=../content/1033/tcplccontrol/html/tcplcctrl
_struct.htm&id=. (collected, 2019-03-29)

57

https://www.beckhoff.com/english.asp?twincat/te1111.htm
https://www.beckhoff.com/english.asp?twincat/te1111.htm
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://visualstudio.microsoft.com/vs/older-downloads/isolated-shell/
https://visualstudio.microsoft.com/vs/older-downloads/isolated-shell/
http://www.plcdev.com/definition_of_a_plc
http://www.plcdev.com/definition_of_a_plc
https://download.beckhoff.com/download/document/catalog/Beckhoff_EtherCAT_G_e.pdf
https://download.beckhoff.com/download/document/catalog/Beckhoff_EtherCAT_G_e.pdf
https://www.beckhoff.com/english.asp?twincat/einlei1.htm/
https://www.beckhoff.com/english.asp?twincat/einlei1.htm/
https://www.electronicdesign.com/test-measurement/what-s-difference-between-jitter-and-noise
https://www.electronicdesign.com/test-measurement/what-s-difference-between-jitter-and-noise
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/9007201785020555-1.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/9007201785020555-1.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/9007201785020555-1.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/9007201785048459-2.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/9007201785048459-2.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/9007201785048459-2.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/2530340747.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/2530340747.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplccontrol/html/TcPlcCtrl_ResGlobVar.htm&i=
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplccontrol/html/TcPlcCtrl_ResGlobVar.htm&i=
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplccontrol/html/TcPlcCtrl_ResGlobVar.htm&i=
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplccontrol/html/tcplcctrl_struct.htm&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplccontrol/html/tcplcctrl_struct.htm&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplccontrol/html/tcplcctrl_struct.htm&id=

[27]. MIT (2019). Reading 14: Interfaces. http://web.mit.edu/6.005/
www/fa15/classes/14-interfaces/. (collected, 2019-03-29)

[28]. Beckhoff_NCAxes (2019). TwinCAT NC axes. https://infosys
.beckhoff.com/english.php?content=../content/1033/tcncgeneral/html/
tcncaxis.htm&id=2765368370592350287. (collected, 2019-05-06)

[29]. Beckhoff_Motion (2018). Motion function blocks. https://www.beckhoff
.com/english.asp?twincat/twincat-3-functions.htm?id=1905053018901109.

(collected, 2019-03-22)

[30]. EtherCAT_Company (2019). Ethercat technology group. https://
www.ethercat.org/en/tech_group.html. (collected, 2019-04-18)

[31]. Beckhoff_E-CATFast (2018). Beckhoff Ethercat components: Fast.
https://www.beckhoff.com/ethercat/. (collected, 2019-02-05)

[32]. EtherCAT_Function (2019). Ethercat. https://www.ethercat.org/
en/technology.html. (collected, 2019-04-18)

[33]. Beckhoff_SafetyCard (2019). EtherCAT safety-card https://www
.beckhoff.com/EL1904/. (collected,2019-05-06)

[34]. OMAC (2019). PackML unit/machine implementation guide. PackML
_Unit_Machine_Implementation_Guide-V1-00.pdf. (collected, 2019-02-06)

[35]. Beckhoff_Framework (2019). TwinCAT framework ideas. TwinCATCodeLayoutV2
.docx. (collected, 2019-02-06)

[36]. Yaskawa (2012). PackML PackML_Modes_Yaskawa.pdf. (collected,
2019-05-07)

[37]. ControlEngineering_Alarm (2018). Alarm management: 6 hazards, 4
strategies. https://www.controleng.com/miscs/alarm-management-6-hazards
-4-strategies/. (collected, 2019-05-31)

[38]. Beckhoff_EventLogger (2019). Event Logger. https://download
.beckhoff.com/download/Document/automation/twincat3/TC3_EventLogger
_EN.pdf. (collected, 2019-05-08)

[39]. SquareSpace (2019). JSON. https://developers.squarespace.com/
what-is-json. (collected, 2019-05-08)

[40]. Beckhoff_Alarm (2019). Alarm. https://download.beckhoff.com/
download/Document/automation/twincat3/TwinCAT_3_PLC_Lib_Tc3_PackML
_V2_EN.pdf. (collected, 2019-05-08)

[41]. ControlEngineering_Drives (2018). Drives software programming –
using PLC or drive custom programming?. https://www.controleng.com/

58

http://web.mit.edu/6.005/www/fa15/classes/14-interfaces/
http://web.mit.edu/6.005/www/fa15/classes/14-interfaces/
https://infosys.beckhoff.com/english.php?content=../content/1033/tcncgeneral/html/tcncaxis.htm&id=2765368370592350287
https://infosys.beckhoff.com/english.php?content=../content/1033/tcncgeneral/html/tcncaxis.htm&id=2765368370592350287
https://infosys.beckhoff.com/english.php?content=../content/1033/tcncgeneral/html/tcncaxis.htm&id=2765368370592350287
https://www.beckhoff.com/english.asp?twincat/twincat-3-functions.htm?id=1905053018901109
https://www.beckhoff.com/english.asp?twincat/twincat-3-functions.htm?id=1905053018901109
https://www.ethercat.org/en/tech_group.html
https://www.ethercat.org/en/tech_group.html
https://www.beckhoff.com/ethercat/
https://www.ethercat.org/en/technology.html
https://www.ethercat.org/en/technology.html
https://www.beckhoff.com/EL1904/
https://www.beckhoff.com/EL1904/
PackML_Unit_Machine_Implementation_Guide-V1-00.pdf
PackML_Unit_Machine_Implementation_Guide-V1-00.pdf
TwinCATCodeLayoutV2.docx
TwinCATCodeLayoutV2.docx
PackML_Modes_Yaskawa.pdf
https://www.controleng.com/miscs/alarm-management-6-hazards-4-strategies/
https://www.controleng.com/miscs/alarm-management-6-hazards-4-strategies/
https://download.beckhoff.com/download/Document/automation/twincat3/TC3_EventLogger_EN.pdf
https://download.beckhoff.com/download/Document/automation/twincat3/TC3_EventLogger_EN.pdf
https://download.beckhoff.com/download/Document/automation/twincat3/TC3_EventLogger_EN.pdf
https://developers.squarespace.com/what-is-json
https://developers.squarespace.com/what-is-json
https://download.beckhoff.com/download/Document/automation/twincat3/TwinCAT_3_PLC_Lib_Tc3_PackML_V2_EN.pdf
https://download.beckhoff.com/download/Document/automation/twincat3/TwinCAT_3_PLC_Lib_Tc3_PackML_V2_EN.pdf
https://download.beckhoff.com/download/Document/automation/twincat3/TwinCAT_3_PLC_Lib_Tc3_PackML_V2_EN.pdf
https://www.controleng.com/miscs/drives-software-programming-using-plc-or-drive-custom-programming/

miscs/drives-software-programming-using-plc-or-drive-custom-programming/.
(collected, 2019-02-08)

[42]. Cenito (2012). What is HMI? http://www.cenito.se/sv/hmi/. (col-
lected, 2019-02-05)

[43]. InductiveAutomation (2012). What is HMI?
https://inductiveautomation.com/resources/misc/what-is-hmi. (col-

lected, 2019-04-11)

[44]. Beckhoff_HMI (2019). TwinCAT HMI. https://download.beckhoff
.com/download/document/automation/twincat3/TE2000_TC3_HMI_EN.pdf. (col-
lected, 2019-04-11)

[45]. Automationdirect (2019). Automationdirect. https://library.autoamtion
.direct.com/learn-about-hmi-recipes/. (collected, 2019-04-18)

59

https://www.controleng.com/miscs/drives-software-programming-using-plc-or-drive-custom-programming/
http://www.cenito.se/sv/hmi/
https://inductiveautomation.com/resources/misc/what-is-hmi
https://download.beckhoff.com/download/document/automation/twincat3/TE2000_TC3_HMI_EN.pdf
https://download.beckhoff.com/download/document/automation/twincat3/TE2000_TC3_HMI_EN.pdf
https://library.autoamtion.direct.com/learn-about-hmi-recipes/
https://library.autoamtion.direct.com/learn-about-hmi-recipes/

	Introduction
	Theory
	The 12-axis machine of AP&T
	Visual Components
	Virtual Commissioning
	System Structure for Virtual Commissioning

	ADS Communication
	Visual Studio
	Visual Studio Isolated Shell

	PLC
	TwinCAT
	Object Oriented functions
	TwinCAT Motion Control Library

	EtherCAT
	Functional Principle
	The EtherCAT Protocol

	Safety over EtherCAT
	TwinCAT Safety (TwinSAFE)
	OMAC PackML
	OMAC Standard
	Overall layout
	Machine Module level
	Equipment Module level
	Control Module level
	PackML State Operation
	PackML Control Commands
	Production Order
	PackML Modes

	Alarm
	Event Logger
	PackML Alarm

	Drive systems
	Human Machine Interface (HMI)
	TwinCAT HMI

	Recipe
	TwinCAT Recipe Management

	Method
	Training
	Acceptance test criterias
	Learning the basics of the function blocks
	Industrial transportation machine in Visual Components
	ADS-communication with Visual Component
	Program structure
	The MAIN-program
	PackML
	Implementation of the hierarchy (Machine, Equipment, Control)
	Defining Machine-, Equipment- and Control modules
	Testing the behaviour of OMAC PackML
	Machine level
	Equipment level
	Control level

	EtherCAT Safety
	Alarm handling
	HMI
	Running the machine
	Recipe management
	Internationalization
	Publishing the HMI

	Simulation of 12-axis machine

	Result
	Discussion
	ADS-communication
	The model of the machine in Visual Components
	Coupling of axes in TwinCAT
	PackML-structure
	Structs
	HMI - Internationalization
	EtherCAT Safety
	Alarm Handling

	Conclusions
	Further Work
	References

